Open Access Open Access  Restricted Access Subscription or Fee Access


Khalidshah Ramzan Virani, Pravinkumar D Patil


The rapidly increasing population, depleting water resources, and climate change have resulted in prolonged droughts and floods. This has rendered drinking water a competitive resource in many parts of the world. The development of cost-effective and stable materials and methods for providing fresh water in adequate amounts is the need for today’s world. Traditional water/wastewater treatment technologies remain ineffective for providing adequate safe water due to increasing demand of water coupled with stringent health guidelines and emerging contaminants. The challenge to achieve appropriate disinfection without forming harmful disinfection by products by conventional chemical disinfectants, as well as the growing demand for decentralized or point-of-use water treatment and recycling systems calls for new technologies for efficient disinfection and microbial control. Development of novel and cost-effective nanomaterials for environmental remediation, pollution detection and other applications has attracted considerable attention. The utilization of iron oxide nanomaterials has received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability and excellent magnetic properties. In this paper, it has been tried to show how iron oxide nanoparticles (Fe3O4) along with other nanomaterials particularly titanium dioxide (TiO2) can be a tiny possible solution for the global water crisis.


Iron oxide nanomaterials; titanium dioxide nanomaterials; photocatalysis; water treatment

Full Text:



World Health Organization. WHO (2011) Guidelines for drinking-water quality. Geneva: 2011.

Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B, Parvez F, et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 2010;376:252–8. doi:10.1016/s0140-6736(10)60481-3.

Léonard A, Lauwerys RR. Carcinogenicity and mutagenicity of chromium. Mutat Res Genet Toxicol 1980;76:227–39. doi:10.1016/0165-1110(80)90018-4.

Järup L, Åkesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 2009;238:201–8. doi:10.1016/j.taap.2009.04.020.

Sheehan PJ, Meyer DM, Sauer MM, Paustenbach DJ. Assessment of the human health risks posed by exposure to chromium‐contaminated soils. J Toxicol Environ Health 1991;32:161–201. doi:10.1080/15287399109531476.

Haller L, Hutton G, Bartram J. Estimating the costs and health benefits of water and sanitation improvements at global level. J Water Health 2007;5:467. doi:10.2166/wh.2007.008.

Naser HA. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Mar Pollut Bull 2013;72:6–13. doi:10.1016/j.marpolbul.2013.04.030.

Vorosmarty CJ. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science (80- ) 2000;289:284–8. doi:10.1126/science.289.5477.284.

Mishra VK, Upadhyaya AR, Pandey SK, Tripathi BD. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresour Technol 2008;99:930–6. doi:10.1016/j.biortech.2007.03.010.

Akinci G, Guven DE, Ugurlu SK. Assessing pollution in Izmir Bay from rivers in western Turkey: heavy metals. Environ Sci Process Impacts 2013;15:2252. doi:10.1039/c3em00333g.

Ravenscroft P, Brammer H, Richards K. Arsenic Pollution. Wiley-Blackwell; 2009. doi:10.1002/9781444308785.

Trevors JT. National and International Security Requires a Sustainable Planet Earth. Water, Air, Soil Pollut 2010;215:1–2. doi:10.1007/s11270-010-0646-z.

Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B. Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 2011;92:2355–88. doi:10.1016/j.jenvman.2011.06.009.

Bitton G. Activated Sludge Process. 2005. doi:10.1002/0471717967.ch8.

Wang LK, Wu Z, Shammas NK. Trickling filters. Biol Treat Process Vol 8 2009;8:371–433.

Mendoza-Espinosa L, Stephenson T. A Review of Biological Aerated Filters (BAFs) for Wastewater Treatment. Environ Eng Sci 1999;16:201–16. doi:10.1089/ees.1999.16.201.

da Silva LF, Barbosa AD, de Paula HM, Romualdo LL, Andrade LS. Treatment of paint manufacturing wastewater by coagulation/electrochemical methods: Proposals for disposal and/or reuse of treated water. Water Res 2016;101:467–75. doi:10.1016/j.watres.2016.05.006.

Chong MF. Direct Flocculation Process for Wastewater Treatment. Adv Water Treat Pollut Prev 2012:201–30. doi:10.1007/978-94-007-4204-8_8.

Al-Mutaz I, Al-Anezi I. Silica removal during lime softening in water treatment plant. Int Conf Water Resour Arid

Environ 2004:1–10.

Magnus P, Jaakkola JJ, Skrondal A, Alexander J, Becher G, Krogh T, et al. Water chlorination and birth defects. Epidemiology 1999;10:513–7. doi:10.1097/00006254-200003000-00007.

Wolrd Chlorine Council. Drinking Water Chlorination. Wolrd Chlorine Counc 2008:8. doi:10.1002/(SICI)1521-401X(199902)27:2<100::AID-AHEH100>3.3.CO;2-1.

Hu JY, Wang ZS, Ng WJ, Ong SL. Disinfection by-products in water produced by ozonation and chlorination. Environ Monit Assess 1999;59:81–93. doi:10.1023/A:1006076204603.

Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Appl Catal B Environ 2010;99:27–42. doi:10.1016/j.apcatb.2010.06.033.

Anglada Á, Rivero MJ, Ortíz I, Urtiaga A. Effect of dye auxiliaries on the kinetics of advanced oxidation UV/H2O2of Acid Orange 7 (AO7). J Chem Technol Biotechnol 2008;83:1339–46. doi:10.1002/jctb.1981.

Dantas RF, Rossiter O, Teixeira AKR, Sim??es ASM, da Silva VL. Direct UV photolysis of propranolol and metronidazole in aqueous solution. Chem Eng J 2010;158:143–7. doi:10.1016/j.cej.2009.12.017.

Sanches S, Barreto Crespo MT, Pereira VJ. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Res 2010;44:1809–18. doi:10.1016/j.watres.2009.12.001.

Oehmen A, Viegas R, Velizarov S, Reis MAM, Crespo JG. Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor. Desalination 2006;199:405–7. doi:10.1016/j.desal.2006.03.091.

Fernández-Olmo I, Ortiz A, Urtiaga A, Ortiz I. Selective iron removal from spent passivation baths by ion exchange. J Chem Technol Biotechnol 2008;83:1616–22. doi:10.1002/jctb.1997.

Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res 2009;43:2317–48. doi:10.1016/j.watres.2009.03.010.

Radjenović J, Petrović M, Ventura F, Barceló D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 2008;42:3601–10. doi:10.1016/j.watres.2008.05.020.

Vourch M, Balannec B, Chaufer B, Dorange G. Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination 2008;219:190–202. doi:10.1016/j.desal.2007.05.013.

Amin MT, Alazba AA, Manzoor U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Adv Mater Sci Eng 2014;2014:1–24. doi:10.1155/2014/825910.

A. Hu and A. Apblett. Nanotechnology for Water Treatment and Purification. Lect Notes Nanoscale Sci Technol 2014. doi:10.1007/978-3-319-06578-6.

Bottero J-Y, Rose J, Wiesner MR. Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integr Environ Assess Manag 2006;2:391–5. doi:10.1002/ieam.5630020411.

Umar M, Abdul H. Photocatalytic Degradation of Organic Pollutants in Water. Org Pollut - Monit Risk Treat 2013. doi:10.5772/53699.

Choi SK, Kim S, Lim SK, Park H. Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: Effects of mesoporosity and interparticle charge transfer. J Phys Chem C 2010;114:16475–80. doi:10.1021/jp104317x.

Henderson MA. A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 2011;66:185–297. doi:10.1016/j.surfrep.2011.01.001.

Marcu A, Pop S, Dumitrache F, Mocanu M, Niculite CM, Gherghiceanu M, et al. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer. Appl Surf Sci 2013;281:60–5. doi:10.1016/j.apsusc.2013.02.072.

Xu C, Sun S. New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 2013;65:732–43. doi:10.1016/j.addr.2012.10.008.

Watson S, Beydoun D, Amal R. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. J Photochem Photobiol A Chem 2002;148:303–13. doi:10.1016/s1010-6030(02)00057-6.

Yu L, Peng X, Ni F, Li J, Wang D, Luan Z. Arsenite removal from aqueous solutions by γ-Fe2O3–TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J Hazard Mater 2013;246–247:10–7. doi:10.1016/j.jhazmat.2012.12.007.

Xu SC, Zhang YX, Pan SS, Ding HL, Li GH. Recyclable magnetic photocatalysts of Fe2+/TiO2 hierarchical architecture with effective removal of Cr(VI) under UV light from water. J Hazard Mater 2011;196:29–35. doi:10.1016/j.jhazmat.2011.08.068.

Tang Y, Zhang G, Liu C, Luo S, Xu X, Chen L, et al. Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water. J Hazard Mater 2013;252–253:115–22. doi:10.1016/j.jhazmat.2013.02.053.


  • There are currently no refbacks.