Open Access Open Access  Restricted Access Subscription or Fee Access

Preparation and Characterization of Nanosize SnO2 Nanopowders by Precipitation Method

L. C. Nehru

Abstract


Nanocrystalline Tin oxide (SnO2) powders have been synthesized by a direct precipitation method from an aqueous solution in the presence of SnCl4 and NH3. The crystallite size, lattice parameters, dislocation density and number of unit cells in SnO2 nanocrystalline powder (as-prepared and heated) are characterized by X-ray diffraction (XRD). The results of XRD show that pure SnO2 nanocrystalline powder has tetragonal rutile structure; the broad peak indicates small crystallite size of SnO2. The broadening decreases and also the intensities of the diffraction peak increased with increasing thermal treatment temperature, which indicating the crystalline grew larger in size. The average crystallite size is in the order of 8–30 nm. The band gap of SnO2 nanocrystalline powder has been characterized using photoluminescence (PL) spectrometer and it exhibits two emission bands at 416 nm and 456 nm. The PL emission is due to the oxygen vacancies in SnO2 nanopowders and it is discussed in detail.

Keywords: Nanocrystalline, precipitation, X-ray diffraction, tetragonal, rutile, photoluminescence

Full Text:

PDF

References


REFERENCES

Cabot A., Aribiol J., Rossinyol E., et al. Electrochemical and Solid-state Letters. 2004; 7(5): G93p.

Gu F., Wang S.F., Song C.F., et al. Chemical Physics Letters. 2003; 372: 451p.

Gu F., Wang S.F., Lu M.K et al. J Phys Chem. 2004; B 108: 8119p.

Leite E.R., Weber I.T., Longo E., et al. Adv Mater. 2004; 12: 966p.

Wei B.Y., Hsu M.C., Su P.G., Lin et al. Sens Actuators. 2004; B 101: 81p.

Cao Y., Zhang X., Yang W., et al. Chem Mater. 2000; 12: 3445p.

Peng X.S., Zhang L.D., Meng G.W., et al. J Appl Phys. 2003; 93: 1760p.

Dai Z.R., Pan Z.W., Wang Z.L. J Am Chem Soc. 2002; 124: 8673p.

Ying Z., Wan Q., Song Z.T., et al. Mater Lett. 2005; 59:1670p.

Vayssieres L., Graetzel M., Angew. Chem., 2004; 116: 3752p.

Gu F., Wang S.F., Lü M.K., et al. J Phys Chem. 2004; B 108: 8119p.

Zhang J., Gao L. Chem Lett. 2003; 32: 458p.

Yang H., Song X., Zhang X., et al. Mate Lett. 2003; 57: 3124p.

Wu D.S., Han C.Y., Wang S.Y., et al. Materials Letters. 2002; 53:155p.

Xu C., Xu G., Liu Y., et al. Scripta Mate. 2002; 46: 789p.

Herrmann J.M., Disdier J., Fernández A., et al. Nanostruct Mater. 1997; 8: 675p.

Liu Z., Zhang D., Han S., et al. Adv Mater. 2003; 15:1754p.

Panchapakeshan B., DeVoe D.L., Widmaier M.R., et al. Nanotech. 2001; 12: 336p.

Neri G., Bonavita A., Micali G., et al. Sensors and Actuators. 2006; B 117: 196p.

Yang H., Tao Q., Zhang X., et al. Alloys. 457(1–2): 447p.

Velumani S., Mathew X., Sebastian P., et al. Solar Energy Materials & Solar cells. 2003; 76: 347p.

Singh P., Kumar A., Kaushal A., et al. Bull Mater Sci. 2008; 31(3): 573p.

Toledo-Antonio J.A., Gutiérrez-Baez R., Sebastian P.J., et al. J Solid State Chemistry. 2003; 174: 241p.

Zhang J., Gao L. J Solid State Chem., 2004; 177:1425p.

Joseph J., Mathew V., Abraham K.E. Crys Res Technol. 2006; 41(10):1020p.

Sahu P.K., Behera S.K., Pratihar S.K., Bhattacharyya S. Ceramics Int. 2004; 30: 1231p.

Gu F., Wang S.F., Lü M.K., et al. Inorg. Chem. Commu. 2003; 6: 882p.

Gu F., Wang S.F., Song C.F., et al. Chemical Physics Letters. 2003; 372: 451p.

Hu J.Q., Ma X.L., Shang N.G., et al. J Phys Chem. 2002; B 106: 3823p.

Calestani D., Lazzarini L., Salviati G., et al. Cryst. Res. Technol. 2005; 40: 937p.

He J.H., Wu T.H., Hsin C.L., et al. Small. 2006; 2: 116p.

Hu J.Q., Ma X.L., Shang N.G., et al. J Phys Chem. 2002; B 106: 3823p.

Kim H.W., Kim N.H., Myung J.H., et al. Phys Status Solidi. 2005; A 202: 1758p.

Brovelli S., Chiodini N., Meinardi F., et al. Appl Phys Lett. 2006; 89: 153126p.

Gu F., Wang S.F., Song C.F.,et al. Chem Phys Lett. 2003; 372: 451p.

Vanheusden K., Warren W.L., Seager C.H., et al. J Appl Phys. 1996; 79: 7983p.




DOI: https://doi.org/10.37628/ijan.v1i1-2.23

Refbacks

  • There are currently no refbacks.