Structural and Elastic Properties Calculation of CdX (X= S, Se, Te) Semiconductors from First-Principles

Bramha P Pandey


First-principle calculations have been performed to calculate the structural and elastic properties of wurzite (wz) CdX(X= S, Se, Te) chalcogenides semiconductor using the plane wave pseudo-potential method within the projected augmented wave approximation (PAW),which works directly with full all electron (AE) wavefunctions and AE potentials. The values of lattice constant (a) and (c), internal parameter (u), Bulk modulus (B), and reduce pressure derivative bulk modulus ( ) using equation of state(eos) have been calculated. The elastic stiffness constants Cij, i.e., C11, C12, C13, C33, C44, C66; Bulk modulus (B)using Cij, Young’s modulus (Y), Shear modulus (G), Poisson’s ratio ( ), Zener anisotropic factor (A), G/B ratio and Debye temperature(θD) have been calculated using stress-strain approach method. The calculated values of these parameters are compared with the available experimental and theoretical values, specially reported by P. Gopal et al.2015 using ACBN0 functional. Reasonably good agreement has been obtained between them at low computational cost using PAW method.


Wurzite II-VI semiconductors; First-principle calculations; Elastic constants; Debye temperature.

Full Text:



J.L. Shay, L.M. Schiavone, E. Buehler, J.H. Wernick, Spontaneous- and stimulated-emission spectra of CdSnP2, J. Appl. Phys. 43 (1972) 2805–2810. doi:10.1063/1.1661599.

I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys. 89 (2001) 5815–5875. doi:10.1063/1.1368156.

M.A. Haase, H. Cheng, D.K. Misemer, T.A. Strand, J. M. DePuydt, ZnSe-ZnSSe electro-optic waveguide modulators, Appl. Phys. Lett. 59 (1991) 3228. doi:

F. Benkabou, H. Aourag, M. Certier, Atomistic study of zinc-blende CdS, CdSe, ZnS, and ZnSe from molecular dynamics, Mater. Chem. Phys. 66 (2000) 10–16. doi:10.1016/S0254-0584(00)00239-X.

C.E. Hurwitz, Electron-Beam Pumped Lasers of CdSe and CdS, Appl. Phys. Lett. 8 (1966) 121. doi:10.1063/1.1754516.

F.H. Nicoll, Ultraviolet ZnO Laser Pumped by an Electron Beam, Appl. Phys. Lett. 9 (1966) 13. doi:10.1063/1.1754578.

P. Gopal, M. Fornari, S. Curtarolo, L.A. Agapito, L.S.I. Liyanage, M.B. Nardelli, Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: A validation of the ACBN0 functional, Phys. Rev. B - Condens. Matter Mater. Phys. 91 (2015). doi:10.1103/PhysRevB.91.245202.

F. Shi-Quan, L.I. Jun-Yu, C. Xin-Lu, The Structural, Dielectric, Lattice Dynamical and Thermodynamic Properties of Zinc-Blende CdX (X=S, Se, Te) from First-Principles Analysis, Chinese Phys. Lett. 32 (2015) 6301. doi:

J.L. Fleche, Thermodynamical functions for crystals with large unit cells such as zircon, coffinite, fluorapatite, and iodoapatite from ab initio calculations, Phys. Rev. B. 65 (2002) 245116. doi:10.1103/PhysRevB.65.245116.

A. Dal Corso, S. Baroni, R. Resta, S. De Gironcoli, Ab initio calculation of phonon dispersions in II-VI semiconductors, Phys. Rev. B. 47 (1993) 3588–3592. doi:10.1103/PhysRevB.47.3588.

B. Rajput, D. Browne, Lattice dynamics of II-VI materials using the adiabatic bond-charge model, Phys. Rev. B. 53 (1996) 9052–9058. doi:10.1103/PhysRevB.53.9052.

S.H. Wei, S.B. Zhang, Structure stability and carrier localization in CdX (X=S, Se, Te) semiconductors, Phys. Rev. B. 62 (2000) 6944–6947. doi:10.1103/PhysRevB.62.6944.

S. Ouendadji, S. Ghemid, H. Meradji, F.E.H. Hassan, Theoretical study of structural, electronic, and thermal properties of CdS, CdSe and CdTe compounds, Comput. Mater. Sci. 50 (2011) 1460–1466. doi:10.1016/j.commatsci.2010.11.035.

E. Menéndez-Proupin, W. Orellana, Tellurium vacancy in cadmium telluride revisited: Size effects in the electronic properties, Phys. Status Solidi. 252 (2015) 2649–2656. doi:10.1002/pssb.201552357.

E. Deligoz, K. Colakoglu, Y. Ciftci, Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe, Phys. B. 373 (2006) 124–130. doi:10.1016/j.physb.2005.11.099.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials., J. Phys. Condens. Matter. 21 (2009) 395502. doi:10.1088/0953-8984/21/39/395502.

G. Kresse, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758–1775. doi:10.1103/PhysRevB.59.1758.

M. Ernzerhof, G.E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional, J. Chem. Phys. 110 (1999) 5029–5036. doi:10.1063/1.478401.

K. Laasonen, R. Car, C. Lee, D. Vanderbilt, Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics, Phys. Rev. B. 43 (1991) 6796–6799. doi:10.1103/PhysRevB.43.6796.

H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188–5192. doi:10.1103/PhysRevB.13.5188.

R.H. Byrd, J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal. 26 (1989) 727–739. doi:10.1137/0726042.

F.D. Murnaghan, The Compressibility of Media Under Extreme Pressures, Proc. Natl. Acad. Sci. USA. 30 (1944) 244. doi:PMC1078704.

A. Bouhemadou, R. Khenata, M. Chegaar, S. Maabed, First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg3, Phys. Lett. A. 371 (2007) 337–343. doi:10.1016/j.physleta.2007.06.030.

C.A. Ponce, R.A. Casali, M.A. Caravaca, Ab initio study of mechanical and thermo-acoustic properties of tough ceramics: applications to HfO 2 in its cubic and orthorhombic phase, J. Phys. Condens. Matter. 20 (2008) 045213. doi:10.1088/0953-8984/20/04/045213.

L. Pan, Q. Xia, S. Ye, N. Ding, Z. Liu, First principles study of electronic structure, chemical bonding and elastic properties of BiOCuS, Trans. Nonferrous Met. Soc. China. 22 (2012) 1197–1202. doi:10.1016/S1003-6326(11)61305-8.

J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B. 23 (1981) 5048–5079. doi:10.1103/PhysRevB.23.5048.

B.P. Pandey, V. Kumar, E. Menéndez-Proupin, Elastic constants and Debye temperature of wz-AlN and wz-GaN semiconductors under high pressure from first-principles, Pramana. 83 (2014) 413–425. doi:10.1007/s12043-014-0785-7.

A. Dal Corso, Clean Ir(111) and Pt(111) electronic surface states: A first-principle fully relativistic investigation, Surf. Sci. 637-638 (2015) 106–115. doi:10.1016/j.susc.2015.03.013.

V. Kumar, B.P. Singh, B.P. Pandey, First-principle calculations of the elastic properties of semiconductors, Comput. Mater. Sci. 87 (2014) 227–231. doi:10.1016/j.commatsci.2014.02.010.

F. Mouhat, F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B. 90 (2014) 224104. doi:10.1103/PhysRevB.90.224104.

J. Sun, H.T. Wang, N. Ben Ming, J. He, Y. Tian, Optical properties of heterodiamond B2CN using first-principles calculations, Appl. Phys. Lett. 84 (2004) 4544–4546. doi:10.1063/1.1758781.

Q. Chen, B. Sundman, Calculation of debye temperature for crystalline structures—a case study on Ti, Zr, and Hf, Acta Mater. 49 (2001) 947–961. doi:10.1016/S1359-6454(01)00002-7.

J. Haines, J.M. L, G. Bocquillon, Synthesis and Design of Superhard Materials, Annu. Rev. Mater. Res. 1955 (2001) 1–23. doi:10.1146/annurev.matsci.31.1.1.

H. Fu, D. Li, F. Peng, T. Gao, X. Cheng, Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures, Comput. Mater. Sci. 44 (2008) 774–778. doi:10.1016/j.commatsci.2008.05.026.

S. Sahin, Y.O. Ciftci, K. Colakoglu, N. Korozlu, First principles studies of elastic, electronic and optical properties of chalcopyrite semiconductor ZnSnP 2, J. Alloys Compd. 529 (2012) 1–7. doi:10.1016/j.jallcom.2012.03.046.

A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, H.K. Mao, Synthesis of novel transition metal nitrides IrN2 and OsN2, Phys. Rev. Lett. 96 (2006). doi:10.1103/PhysRevLett.96.155501.

S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin Philos. Mag. J. Sci. Ser. 7. 45 (1954) 823–843.

O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids. 24 (1963) 909–917. doi:10.1016/0022-3697(63)90067-2.

S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors, John Wiley & Sons, Ltd, 2009.

P. Gopal, M. Fornari, S. Curtarolo, L.A. Agapito, L.S.I. Liyanage, M.B. Nardelli, Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: a validation of the ACBN0 functional, (2015) 1–10.


D. Vogel, P. Krüger, J. Pollmann, Self-interaction and relaxation-corrected pseudopotentials for II-VI semiconductors, Phys. Rev. B. 54 (1996) 5495–5511. doi:10.1103/PhysRevB.54.5495.

M. Grunwald, A. Zayak, J.B. Neaton, P.L. Geissler, E. Rabani, Transferable pair potentials for CdS and ZnS crystals, J. Chem. Phys. 136 (2012). doi:10.1063/1.4729468.

O. Madelung, Semiconductors: Data Handbook; Ix - VIy compounds, in: Semicond. Data Handb. 3rd Ed., 2004: pp. 220–235. doi:10.1007/978-3-642-18865-7.

L.I. Berger, Semiconductor Materials, CRC Press, Inc., Florida, 1997.

R.M. Martin, Relation between elastic tensors of Wurtzite and zinc-blende structure materials, Phys. Rev. B. 6 (1972) 4546–4553. doi:10.1103/PhysRevB.6.4546.

G.A. Slack, Thermal conductivity of II-VI compounds and phonon scattering by Fe2+ impurities, Phys. Rev. B. 6 (1972) 3791–3800. doi:10.1103/PhysRevB.6.3791.

O. Madelung, Semiconductors Other than Group IV Elements and III-V compounds, Springer-Verilog, New York, 1992.


  • There are currently no refbacks.