Open Access Open Access  Restricted Access Subscription or Fee Access

Two-dimensional MoS2 Nanosheets: Preparation and Characterization

Binoy Bera, Diptonil Banerjee

Abstract


The amazing properties and useful applications of graphene in the field of sensors, electronics and material science opens a new challenges to other two dimensional semiconductor materials. Specially due to extraordinary electronic, mechanical and optical properties, molybdenum disulfide (MoS2) is attracting huge interest in several applications. Single layer MoS2 with direct band gap shows better semiconductor behavior such as photoluminescence, makes them more acceptable in optoelectronic applications in comparison with graphene which is an indirect band gap material. In this paper MoS2 nanosheets has been prepared by simple one step hydrothermal and electrochemical exfoliation process. Hexaammonium heptamolybdate tetrahydrate and thiourea were used as principle material in hydrothermal method. Here hexaammonium heptamolybdate tetrahydrate and thiourea are acting as a source of molybdenum and sulfur respectively. Temperature and time plays a crucial role in hydrothermal synthesis of MoS2 nanosheets. Here nanosheets were prepared with 20hrs time and temperature of 2000C. Furthermore, nanosheets were characterized by scanning electron microscope, X-ray diffraction, fourier transformed infrared spectroscopy, UV-Vis and TGA-DTA analysis. In electrochemical exfoliation process, Bulk MoS2 crystal can been used as a cathode while a lithium foil was used as an anode material. Here only surface analysis were done by field emission scanning electron microscopy (FE-SEM) method. Transmission electron microscope (TEM) has also been used for clear understanding of MoS2 nanosheets. A little literature about the electrochemical process for synthesis of MoS2 nanosheets were also presented.


Keywords


Molybdenum disulfide, nanosheets, hydrothermal, field emission scanning electron microscope, electrochemical exfoliation, TEM.

Full Text:

PDF

References


K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, (2004-10-22). "Electric Field Effect in Atomically Thin Carbon Films". Science. 306 (5696): 666-669.

Yuanhong Xu, Jingquan Liu. Graphene as Transparent Electrodes: Fabrication and New Emerging Applications. Volume12,Issue11March16,2016, Pages 1400–1419. DOI: 10.1002/smll.201502988

Martin Pumera, Graphene-based nanomaterials for energy storage, Energy Environ. Sci., 2011,4, 668-674. DOI:10.1039/C0EE00295J.

Yue Zhang, Qunwei Tang, Benlin He and Peizhi Yang. Graphene enabled all-weather solar cells for electricity harvest from sun and rain. J. Mater. Chem. A, 2016,4, 13235-13241. DOI:10.1039/C6TA05276B.

Hyunmin Kim, Jong-Hyun Ahn Graphene for flexible and wearable device applications. Carbon. Volume 120, August 2017, Pages 244-257. https://doi.org/10.1016/j.carbon.2017.05.041.

BrunoF. Machado and Philippe Serp. Graphene-based materials for catalysis.

Catal. Sci. Technol., 2012,2, 54-75 . DOI:10.1039/C1CY00361E.

John R. Miller, R. A. Outlaw, B. C. Holloway. Graphene Double-Layer Capacitor with ac Line-Filtering Performance. Science 24 Sep 2010: Vol. 329, Issue 5999, pp. 1637-1639. DOI: 10.1126/science.1194372.

DianaBerman, AliErdemir, Anirudha V. Sumant. Graphene: a new emerging lubricant. Materials Today, Volume 17, Issue 1, January–February 2014, Pages 31-42. https://doi.org/10.1016/j.mattod.2013.12.003.

Mehmet Copuroglu, Pinar Aydogan, Emre O. Polat, Coskun Kocabas, and Sefik Süzer. Gate-Tunable Photoemission from Graphene Transistors. Nano Lett., 2014, 14 (5), pp 2837–2842. DOI: 10.1021/nl500842y.

Hamid Ghorbani Shiraz, Omid Tavakoli. Investigation of graphene-based systems for hydrogen storage. Renewable and Sustainable Energy Reviews, Volume 74, July 2017, Pages 104-109. https://doi.org/10.1016/j.rser.2017.02.052.

Yi Han, Zhen Xu, Chao Gao. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Advanced Functional Materials. Volume 23, Issue 29. August 7, 2013. Pages 3693–3700. DOI: 10.1002/adfm.201202601.

Gonçalo da Cunha Rodrigues, Pavel Zelenovskiy, Konstantin Romanyuk, Sergey Luchkin, Yakov Kopelevich & Andrei Kholkin. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 7:7572 doi: 10.1038/ncomms8572 (2015).

Guoxing Li, Yuliang Li, Huibiao Liu, Yanbing Guo, Yongjun Li, Daoben Zhu (2010). Architecture of graphdiyne nanoscale films. Chemical Communications. 46 (19): 3256–3258. doi:10.1039/B922733D.

Binoy Bera. Synthesis, Properties and Applications of Amorphous Carbon Nanotube and MoS2 Nanosheets: A Review. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019; 21(1): 36–52p.

Binoy Bera, Diptonil Banerjee. A Detail Opto-electronic and Photocatalytic Study of Amorphous Carbon Nanotubes—MoS2 Hybrids. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019; 21(2): 19–30p.

Binoy Bera. Silicon Wafer Cleaning: A Fundamental and Critical Step in Semiconductor Fabrication Process. International Journal of Applied Nanotechnology. 2019; 5 (1): 8–13p.

Binoy Bera. Synthesis, Properties and Applications of Amorphous Carbon Nanotube and MoS2 Nanosheets: A Review. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019; 21(1): 36–52p.

Binoy Bera. Hydroxyapatite, Synthesis of numerous CdS quantum dot composite material: A Review. International Journal of Nanomaterials and Nanostructure. 2019; 5 (1) 1–11p.

Binoy Bera. Porous Silicon and its Nanoparticles: A Theoretical Study. International Journal of Applied Nanotechnology.2019; 5 (1): 14–18p.

Binoy Bera. Synthesis and Applications of ACNT-MoS2 Nanocomposite. A Review. International Journal of Nanomaterials and Nanostructure. 2019; 5 (1) 31–38p.

F. H. L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.

H. Li, G. Lu, Z. Yin, Q. He, H. Li, Q. Zhang, H. Zhang. Optical Identification of Single- and Few-Layer MoS2 Sheets. Small 2012, 8, 682–686.

M. Buscema, G. A. Steele, H. S. J. van der Zant, A. Castellanos-Gomez. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

K. Liu, J. Feng, A. Kis, & A. Radenovic. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504-2511. doi:10.1021/nn406102h (2014).

J. Brivio, D. T. Alexander, & A. Kis. Ripples and layers in ultrathin MoS2 membranes. Nano Lett 11, 5148-5153. doi:10.1021/nl2022288 (2011).

S. V. Prabhakar Vattikuti, C. Byon. Synthesis and characterization of molybdenum disulfide nanoflowers and nanosheets: Nanotribology. Hindawi Publishing Corporation, Journal of Nanomaterials. 2015, Article ID 710462, 1–11.

B. Bera. Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique). Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-8, 2016.

B. Bera, Madhumita.Das Sarkar. Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept . IOSR Journal of Applied Physics (IOSR-JAP). Volume 9, Issue 3 Ver. I, PP 95-99.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Sensor Made of PVDF/graphene Electrospinning Fiber and Comparison between Electrospinning PVDF Fiber and PVDF/graphene Fiber. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-5, 2016.

Binoy Bera, Madhumita Das Sarkar. Gold Nanoparticle Doped PVDF Nanofiber Preparation of Concurrently Harvesting Light and Mechanical Energy. IOSR Journal of Applied Physics (IOSR-JAP).Volume 9, Issue 3 Ver. III (May - June 2017), PP 05-12.

Binoy Bera, Madhumita Das Sarkar. PVDF based Piezoelectric Nanogenerator as a new kind of device for generating power from renewable resources. IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE). Volume 4, Issue 2 (Mar. - Apr. 2017), PP 01-05.

Binoy Bera. Preparation of polymer nanofiber and its application. Asian journal of physical and chemical sciences. volume 2, issue 4, 1-4, 2017. article no. AJOPACS. 35651.

Binoy Bera. Literature Review on Triboelectric Nanogenerator. Imperial Journal of Interdisciplinary Research(IJIR). 2(10):1263-1271·January2016.

Binoy Bera. Preparation of MoS2 nanosheets and PVDF nanofiber. Asian journal of physical and chemical sciences. volume 2, issue 4, 1-9, 2017.article no. AJOPACS. 35176.

Binoy Bera. Nanoporous Silicon Prepared by Vapour Phase Strain Etch and Sacrificial Technique. IJCA Proceedings on International Conference on Microelectronic Circuit and System MICRO 2015(1):42-45, December 2015.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Porous Silicon and its Nanoparticle as Biomaterial: A Review. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-11, 2016. (4).

Binoy Bera. A Review on Polymer, Graphene and Carbon Nanotube: Properties, Synthesis and Applications. Imperial Journal of Interdisciplinary Research (IJIR). Vol-3, Issue-10, 2017.

Hari Sarkar, Binoy Bera, Sudakshina Kundu. Sleep Mode Transistor Sizing Effect of MTCMOS Inverter Circuit on Performance in Deep Submicron Technology. Global Journal of Trends in Engineering (GJTE). Vol(2)-Issue(4), 2015.

Binoy Bera, Madhumita Das Sarkar. Piezoelectric Effect, Piezotronics and Piezophototronics: A Review. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-11, 2016.

Binoy Bera, Diptonil Banerjee. Preparation and Characterization of Amorphous Carbon Nanotube-MoS2 Nanohybrid. International Journal of Research in Engineering, Science and Management Volume-2, Issue-8, August-2019, 5-8p.

Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu, Z. Wang. A facile route to synthesis of MoS2 nanorods. Materials Letters. 2005,59, 3452–3455.

Simone Bertolazzi, Jacopo Brivio, Andras Kis (2011). Stretching and Breaking of Ultrathin MoS2. ACS Nano. 5 (12): 9703–9709. doi:10.1021/nn203879f.

T. Stephenson, Z. Li, B. Olsen, D. Mitlin (2014). Lithium Ion Battery Applications of Molybdenum Disulfide (MoS2) Nanocomposites. Energy Environ. Sci. 7: 209–31. doi:10.1039/C3EE42591F.

Peter Cannon (1959). Melting Point and Sublimation of Molybdenum Disulphide. Nature. 183 (4675): 1612–1613. doi:10.1038/1831612a0.

A. B. Laursen, S. Kegnaes, S. Dahl, I. Chorkendorff (2012). Molybdenum Sulfides – Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution. Energy Environ. Sci. 5 (2): 5577–91. doi:10.1039/c2ee02618j.

Jonathan N. Coleman, Mustafa Lotya, Arlene O’Neill, Shane D. Bergin, Paul J. King, Umar Khan, Karen Young, Alexandre Gaucher, Sukanta De (2011-02-04). Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science. 331 (6017): 568–571. doi:10.1126/science.1194975.

X.H. ZHANG, C. WANG, M.Q. XUE, B.C. LIN, X. YE, W.N. LEI. HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF ULTRATHIN MoS2 NANOSHEETS. Chalcogenide Letters Vol. 13, No. 1, January 2016, p. 27 – 34.

Qinglin Zhang, Zhanwei Xu, Hejun Li, Liyan Wu,Gaoxiang Cao & Kezhi Li. Synthesis of MoS2 Nanosheets by Solid-State Reaction in CVD Furnace. Integrated Ferroelectrics . Volume 128, 2011 - Issue 1. http://dx.doi.org/10.1080/10584587.2011.576612.

Claudia Altavilla, Maria Sarno, and Paolo Ciambelli. A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M=Mo, W). Chem. Mater. 2011, 23, 3879–3885. http://dx.doi.org/10.1021/cm200837g.

J.M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithiumbatteries, Nature 414 (2001) 359–367.

A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. van Schalkwijk. Nanostructured materials for advanced energy conversion and storagedevices, Nat. Mater. 4 (2005) 366–377.

X. Li, Y. Feng, M. Li, W. Li, H. Wei, D. Song. Smart hybrids of Zn2GeO4nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage andexcellent electrochemical performance, Adv. Funct. Mater. 25 (2015)6858–6866.

M. Armand, J.M. Tarascon. Building better batteries, Nature 451 (2008)652–657.

B. Kang, G. Ceder. Battery materials for ultrafast charging and discharging,Nature 458 (2009) 190–193.

X. Li, W. Li, M. Li, P. Cui, D. Chen, T. Gengenbach, L. Chu, H. Liu, G. Song. Glucose-assisted synthesis of the hierarchical TiO2 nanowire@MoS2nanosheet nanocomposite and its synergistic lithium storage performance, J.Mater. Chem. A 3 (2015) 2762–2769.

D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J.-C. Jumas, J.-M. Tarascon. Recent findings and prospects in the field of pure metals as negativeelectrodes for Li-ion batteries, J. Mater. Chem. 17 (2007) 3759–3772.

Y. Feng, X. Li, Z. Shao, H. Wang. Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ionbatteries, J. Mater. Chem. A 3 (2015) 15274–15279.

L. Chu, M. Li, X. Li, Y. Wang, Z. Wan, S. Dou, D. Song, Y. Li, B. Jiang. Highperformance NiO microsphere anode assembled from porous nanosheets forlithium-ion batteries, RSC Adv. 5 (2015) 49765–49770.

P. Cui, B. Xie, X. Li, M. Li, Y. Li, Y. Wang, Z. Liu, X. Liu, J. Huang, D. Song, J.M.Mbengue. Anatase/TiO2-B hybrid microspheres constructed from ultrathinnanosheets: facile synthesis and application for fast lithium ion storage,CrystEngComm 17 (2015) 7930–7937.


Refbacks

  • There are currently no refbacks.