Open Access Open Access  Restricted Access Subscription or Fee Access

A Review on Perovskite Nanostructure for Renewable Energy Applications in Recent Advances

Subhasis Roy

Abstract


Efficient energy production as well as storing energy plays a big challenge to the researchers in these decades. Perovskite nanomaterials have excellent tunable optoelectronic properties and are suitable for a wider range of renewable energy device fabrication. The objective of this paper is to review various applications of perovskite nanostructure for the renewable energy fields. This review discusses the origin of perovskite materials and the potential field for the application of different nanomaterials. Furthermore, the rapidly growing interest of perovskite material in the renewable energy field for its unique property is vividly discussed. This review summarizes the origin of perovskite materials, examples of different types of perovskite nanomaterials, and wider application area of this potential novel nano-materials with its recent advances

Keywords


Perovskite material, renewable energy, solar cell, energy storage, photovoltaics

Full Text:

PDF

References


Chen, Xiaobo, et al. Nanomaterials for Renewable Energy Production and Storage. Chemical Society Reviews, vol. 41, no. 23, 2012, p. 7909. DOI.org (Crossref), doi:10.10

/c2cs35230c.

Wang, Huilin, et al. Multifunctional Inorganic Nanomaterials for Energy Applications. Nanoscale, vol. 12, no. 1, 2020, pp. 14–42. DOI.org (Crossref), doi:10.1039/C9NR07008G.

Xu, Gui-Liang, et al. Tuning the Structure and Property of Nanostructured Cathode Materials of Lithium Ion and Lithium Sulfur Batteries. J. Mater. Chem. A, vol. 2, no. 47, 2014, pp. 19941–62. DOI.org (Crossref), doi:10.1039/C4TA03

A.

Grim, R. Gary, et al. Transforming the Carbon Economy: Challenges and Opportunities in the Convergence of Low-Cost Electricity and Reductive CO2 Utilization. Energy & Environmental Science, vol. 13, no. 2, 2020, pp. 472–94. DOI.org (Crossref), doi:10.1039/C9EE02410G.

Zabihi, Fatemeh, et al. Perovskite Solar Cell-Hybrid Devices: Thermoelectrically, Electrochemically, and Piezoelectrically Connected Power Packs. Journal of Materials Chemistry A, vol. 7, no. 47, 2019, pp. 26661–92. DOI.org (Crossref), doi:10.1039/C9T

A08070H.

Song, Tze-Bin, et al. Perovskite Solar Cells: Film Formation and Properties. Journal of Materials Chemistry A, vol. 3, no. 17, 2015, pp. 9032–50. DOI.org (Crossref), doi:10.1039/

C4TA05246C.

Kostopoulou, A., et al. Perovskite Nanostructures for Photovoltaic and Energy Storage Devices. Journal of Materials Chemistry A, vol. 6, no. 21, 2018, pp. 9765–98. DOI.org (Crossref), doi:10.1039/C8TA01964A.

Assirey, Eman Abdul Rahman. Perovskite Synthesis, Properties and Their Related Biochemical and Industrial Application. Saudi Pharmaceutical Journal, vol. 27, no. 6, Sept. 2019, pp. 817–29. DOI.org (Crossref), doi:10.1016/j.jsps.2019.05.003.

Shim, J.H., et al. Process–Property Relationship in High-k ALD SrTiO 3 and BaTiO3: A Review. Journal of Materials Chemistry C, vol. 5, no. 32, 2017, pp. 8000–13. DOI.org (Crossref), doi:10.1039/C6TC05158H.

Bowen, C.R., et al. Piezoelectric and Ferroelectric Materials and Structures for Energy Harvesting Applications. Energy Environ. Sci. vol. 7, no. 1, 2014, pp. 25–44. DOI.org (Crossref), doi:10.1039/C3EE42454E.

Chavhan, Sudam, et al. Organo-Metal Halide Perovskite-Based Solar Cells with CuSCN as the Inorganic Hole Selective Contact. J. Mater. Chem. A, vol. 2, no. 32, 2014, pp. 12754–60. DOI.org (Crossref), doi:10.1039/

C4TA01310G.

SA Moyez, S Roy, Dual-step thermal engineering technique: a new approach for fabrication of efficient CH3NH3PbI3-based perovskite solar cell in open air condition, Solar Energy Materials and Solar Cells 185, 145–152.

S Roy, GS Han, H Shin, JW Lee, J Mun, H Shin, HS Jung, Low temperature synthesis of rutile TiO2 nanocrystals and their photovoltaic and photocatalytic properties, Journal of nanoscience and nanotechnology 15 (6), 4516–4521.

Wang, Qun, et al. Morphological and Chemical Tuning of Lead Halide Perovskite Mesocrystals as Long-Life Anode Materials in Lithium-Ion Batteries. Cryst Eng Comm, vol. 21, no. 6, 2019, pp. 1048–59. DOI.org (Crossref), doi:10.1039/C8CE01779D.

Zhang, Yidan, et al. Enhanced Catalytic Activity of LaMnO3 by A-Site Substitution as Air Electrode of Zn–Air Batteries with Attractive Durability. Energy & Fuels, July 2020,p.acs.energyfuels.0c01756.DOI.org(Crossref),doi:10.1021/acs.energyfuels.0c01756.

Kostopoulou, A., et al. Perovskite Nanostructures for Photovoltaic and Energy Storage Devices. Journal of Materials Chemistry A, vol. 6, no. 21, 2018, pp. 9765–98. DOI.org (Crossref), doi:10.1039/C8TA01964A.

Molinari, Marco, et al. Structural, Electronic and Thermoelectric Behaviour of CaMnO3 and CaMnO (3−δ). J. Mater. Chem. A, vol. 2, no. 34, 2014, pp. 14109–17. DOI.org (Crossref), doi:10.1039/C4TA015

B.

Roy, Subhasis, and Gerardine G. Botte. Perovskite Solar Cell for Photocatalytic Water Splitting with a TiO2 /Co-Doped Hematite Electron Transport Bilayer. RSC Advances, vol. 8, no. 10, 2018, pp. 5388–94. DOI.org (Crossref), doi:10.1039/C7

RA11996H.

Pham, Hong Duc, et al. Organic Interfacial Materials for Perovskite-Based Optoelectronic Devices. Energy & Environmental Science, vol. 12, no. 4, 2019, pp. 1177–209. DOI.org (Crossref), doi:10.1039/

C8EE02744G.




DOI: https://doi.org/10.37628/ijan.v6i2.720

Refbacks

  • There are currently no refbacks.