Open Access Open Access  Restricted Access Subscription or Fee Access

A Short Review on Surface Plasmon Polaritons (SPPs) and Its Applications

Aqsa Tehseen, Tahir Iqbal, Almas Bashir

Abstract


A surface plasmon polariton (SPP) is a two-dimensional electromagnetic (EM) mode occurring at the interface of noble metals whose amplitude exponentially decay down to zero when going away from the boundary of the metal. In the last five decades, the investigation is done related to understanding of the excitation of SPPs and their interaction with the features related to the surface of metals. The dispersion of light from the nanostructured metal surface is the result of that interaction. Now, it is possible to directly investigate the field of SPP’s near to the interface with the invention of a technique named as scanning near-field optical microscopy (SNOM). SPPs have wide range of applications in photonics due to different physical phenomena e.g. SPPs scattering, back scattering, interference and localization. This area of photonics attracts a lot of researchers in this field due their large number of interesting applications. In this article, a brief review of the theoretical work on the production of hot carriers on the basis of SPPs is presented. The electronic band calculations and energy distribution of aluminum, gold, silver and copper is also discussed. Keywords Surface plasmon polariton (SPPs), Scanning Near-Field Optical Microscopy (SNOM), Hot Carriers, Optical Sensors

Full Text:

PDF

References


Barnes, W. (1999). Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices. Journal of Lightwave technology, 17(11), 2170.

Barnes, W., Preist, T., Kitson, S., Sambles, J., Cotter, N., & Nash, D. (1995). Photonic gaps in the dispersion of surface plasmons on gratings. Physical Review B, 51(16), 11164.

Catchpole, K. a., & Polman, A. (2008). Plasmonic solar cells. Optics express, 16(26), 21793-21800.

Chen, Y., Koteles, E., Seymor, R., Sonek, G., & Ballantyne, J. (1983). One-dimensional long-range plasmonic-photonic structures. Solid State Commun, 46, 95-99.

Darmanyan, S. A., & Zayats, A. V. (2003). Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study. Physical Review B, 67(3), 035424.

Deshmukh, R., Marques, P., Panda, A., Forrest, S., & Menon, V. (2018). Modification of Photoluminescence via Strong Coupling of Vibronic Transitions in Organic Molecules to Surface Plasmons. Paper presented at the CLEO: QELS_Fundamental Science.

Dowling, J. P., Scalora, M., Bloemer, M. J., & Bowden, C. M. (1994). The photonic band edge laser: A new approach to gain enhancement. Journal of Applied Physics, 75(4), 1896-1899.

Eizner, E., Avayu, O., Ditcovski, R., & Ellenbogen, T. (2015). Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons. Nano letters, 15(9), 6215-6221.

Fang, Y., & Sun, M. (2015). Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science & Applications, 4(6), e294.

Gonçalves, P. A. D., & Peres, N. M. (2016). An introduction to graphene plasmonics: World Scientific.

Goy, P., Raimond, J., Gross, M., & Haroche, S. (1983). Observation of cavity-enhanced single-atom spontaneous emission. Physical review letters, 50(24), 1903.

Ho, K. M., Chan, C. T., Soukoulis, C., Biswas, R., & Sigalas, M. (1994). Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Solid State Communications, 89(5), 413-416.

Iqbal, T., & Afsheen, S. (2016). Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics, 11(5), 1247-1256.

Iqbal, T., Bashir, A., Shakil, M., Afsheen, S., Tehseen, A., Ijaz, M., et al. (2018). Investigation of Plasmonic Bandgap for 1D Exposed and Buried Metallic Gratings. Plasmonics, 1-7.

Kitson, S., Barnes, W., & Sambles, J. (1998). Photonic band gaps in metallic microcavities. Journal of applied physics, 84(5), 2399-2403.

Liu, J., Manjavacas, A., Kulkarni, V., Nordlander, P., & Team, L. (2015). Plasmon-induced Hot Carriers in Metallic Nanoparticles. Paper presented at the APS March Meeting Abstracts.

Maier, S., Brongersma, M., Kik, P., Meltzer, S., Requicha, A., Koel, B., et al. (2003). Plasmonics—A Route to Nanoscale Optical Devices (Advanced Materials, 2001, 13, 1501). Advanced Materials, 15(7‐8), 562-562.

Manjavacas, A., Liu, J. G., Kulkarni, V., & Nordlander, P. (2014). Plasmon-induced hot carriers in metallic nanoparticles. ACS nano, 8(8), 7630-7638.

Meade, R., Rappe, A., Brommer, K., & Joannopoulos, J. (1993). Nature of the photonic band gap: some insights from a field analysis. JOSA B, 10(2), 328-332.

Memmi, H., Benson, O., Sadofev, S., & Kalusniak, S. (2017). Strong coupling between surface plasmon polaritons and molecular vibrations. Physical review letters, 118(12), 126802.

Meschede, D. (1992). Radiating atoms in confined space: From spontaneous emission to micromasers. Physics Reports, 211(5), 201-250.

Muhammad Javaid, T. I. (2015). Plasmonic Bandgap in 1D Metallic Nanostructured Devices. Springer, 11, 167-173.

Neuman, T., Alonso‐González, P., Garcia‐Etxarri, A., Schnell, M., Hillenbrand, R., & Aizpurua, J. (2015). Mapping the near fields of plasmonic nanoantennas by scattering‐type scanning near‐field optical microscopy. Laser & Photonics Reviews, 9(6), 637-649.

Otto, A. (1968). Excitation of nonradiative surface plasma waves in silver by the method of frustratedtotal reflection. Zeitschrift für Physik A Hadrons and nuclei, 216(4).

Ozbay, E. (2006). Plasmonics: merging photonics and electronics at nanoscale dimensions. science, 311(5758), 189-193.

Pitarke, J., Silkin, V., Chulkov, E., & Echenique, P. (2006). Theory of surface plasmons and surface-plasmon polaritons. Reports on progress in physics, 70(1), 1.

Raether, E. K. a. H. (1968). Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch, 23.

Salt, M., & Barnes, W. L. (2000). Flat photonic bands in guided modes of textured metallic microcavities. Physical Review B, 61(16), 11125.

Sambles, J., Bradbery, G., & Yang, F. (1991). Optical excitation of surface plasmons: an introduction. Contemporary physics, 32(3), 173-183.

Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature materials, 9(3), 193.

Song, P., Nordlander, P., & Gao, S. (2011). Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. The Journal of chemical physics, 134(7), 074701.

Sundararaman, R., Narang, P., Jermyn, A. S., Goddard III, W. A., & Atwater, H. A. (2014). Theoretical predictions for hot-carrier generation from surface plasmon decay. Nature communications, 5, 5788.

Törmä, P., & Barnes, W. L. (2014). Strong coupling between surface plasmon polaritons and emitters: a review. Reports on Progress in Physics, 78(1), 013901.

Vempati, S., Iqbal, T., & Afsheen, S. (2015). Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. Journal of Applied Physics, 118(4), 043103.

Wang, K., & Mittleman, D. M. (2006). Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range. Physical review letters, 96(15), 157401.

Watanabe, H., Honda, M., & Yamamoto, N. (2014). Size dependence of band-gaps in a one-dimensional plasmonic crystal. Optics Express, 22(5), 5155-5165.

Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062.

Yablonovitch, E. (1993). Photonic band-gap structures. JOSA B, 10(2), 283-295.

Yan, J., Jacobsen, K. W., & Thygesen, K. S. (2012). Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study. Physical Review B, 86(24), 241404.

Yin, J. Y., Ren, J., Zhang, H. C., Pan, B. C., & Cui, T. J. (2015). Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Scientific reports, 5, 8165.

Zayats, A. V., & Smolyaninov, I. I. (2003). Near-field photonics: surface plasmon polaritons and localized surface plasmons. Journal of Optics A: Pure and Applied Optics, 5(4), S16.

Zayats, A. V., Smolyaninov, I. I., & Maradudin, A. A. (2005). Nano-optics of surface plasmon polaritons. Physics reports, 408(3-4), 131-314.

Zayats, S. A. D. a. A. V. (2003). Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study. [Physical Review B]. APS Physics, 67(3).

Zhang, H. C., Liu, S., Shen, X., Chen, L. H., Li, L., & Cui, T. J. (2015). Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser & Photonics Reviews, 9(1), 83-90.

Zhou, Y., Dibos, A., Scuri, G., Wild, D., High, A., Jauregui, L., et al. (2018). Tunable strong coupling of excitons in 2D semiconductors to surface plasmon polaritons. Bulletin of the American Physical Society.


Refbacks

  • There are currently no refbacks.