Open Access Open Access  Restricted Access Subscription or Fee Access

DOUBLE NEGATIVE MATERIALS: A REVIEW OF THE THEORY AND APPLICATIONS

Aqsa Tehseen, Tahir Iqbal, Khadija Ameen, Almas Bashir

Abstract


Metamaterials are falsely outlined materials having unusual properties. These are artificially designed materials not found in nature. The unusual properties such as negative permittivity and permeability of these artificial materials have been diverted the attention of many researchers towards the miniaturization of antennas and microwave devices. The potential applications of these materials such as optical cloaking, super lenses and many other applications have been attracted the attention of researchers. This paper represents a short overview of metamaterials and their potential applications. Keywords:- Double Negative Material, Negative reflection, Transmission, Applications

Full Text:

PDF

References


Alù, A., & Engheta, N. (2003). Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Transactions on Antennas and Propagation, 51(10), 2558-2571.

Barbuto, M., Monti, A., Bilotti, F., & Toscano, A. (2013). Design of a non-Foster actively loaded SRR and application in metamaterial-inspired components. IEEE Transactions on Antennas and Propagation, 61(3), 1219-1227.

Bohren, C., & Huffman, D. (1983). Absorption and scattering of light by small particles Wiley New York Google Scholar.

Borgeaud, M., Shin, R., & Kong, J. (1987). Theoretical models for polarimetric radar clutter. Journal of Electromagnetic Waves and Applications, 1(1), 73-89.

Caloz, C., Chang, C.-C., & Itoh, T. (2001). Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations. Journal of Applied Physics, 90(11), 5483-5486.

Cheng, Y. Z., Yang, H. L., Nie, Y., Gong, R. Z., & Cheng, Z. Z. (2011). Investigation of negative index properties of planar metamaterials based on split-ring pairs. Applied Physics A, 103(4), 989-994.

Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews, 104(1), 293-346.

Engheta, N. (2002). Ideas for potential applications of metamaterials with negative permittivity and permeability Advances in Electromagnetics of Complex Media and Metamaterials (pp. 19-37): Springer.

Engheta, N., & Ziolkowski, R. W. (2005). A positive future for double-negative metamaterials. IEEE transactions on microwave theory and techniques, 53(4), 1535-1556.

Fang, N., Lee, H., Sun, C., & Zhang, X. (2005). Sub–diffraction-limited optical imaging with a silver superlens. science, 308(5721), 534-537.

Grbic, A., & Eleftheriades, G. V. (2004). Overcoming the diffraction limit with a planar left-handed transmission-line lens. Physical Review Letters, 92(11), 117403.

Houck, A. A., Brock, J. B., & Chuang, I. L. (2003). Experimental observations of a left-handed material that obeys Snell’s law. Physical Review Letters, 90(13), 137401.

Jaggard, D., Mickelson, A., & Papas, C. (1979). On electromagnetic waves in chiral media. Applied physics, 18(2), 211-216.

Kalia, J. (2011). Design of Metamaterial Based Antenna Using Unit Cells.

Kaushal Gangwar, D. P. a. D. R. P. S. G. (2014). Metamaterials: Characteristics, Process and Applications. Advance in Electronic and Electric Engineering., 4, 97-106.

Kreibig, U., & Vollmer, M. (2013). Optical properties of metal clusters (Vol. 25): Springer Science & Business Media.

Kreibig, U., & Zacharias, P. (1970). Surface plasma resonances in small spherical silver and gold particles. Zeitschrift für Physik A Hadrons and nuclei, 231(2), 128-143.

Landy, N. I., Sajuyigbe, S., Mock, J., Smith, D., & Padilla, W. (2008). Perfect metamaterial absorber. Physical Review Letters, 100(20), 207402.

Leonhardt, U. (2006). Optical conformal mapping. science, 312(5781), 1777-1780.

Liu, A., Zhu, W., Tsai, D., & Zheludev, N. I. (2012). Micromachined tunable metamaterials: a review. Journal of Optics, 14(11), 114009.

Liu, L., Caloz, C., Chang, C.-C., & Itoh, T. (2002). Forward coupling phenomena between artificial left-handed transmission lines. Journal of Applied Physics, 92(9), 5560-5565.

Liu, N., & Giessen, H. (2010). Coupling effects in optical metamaterials. Angewandte Chemie International Edition, 49(51), 9838-9852.

Mackenzie, D. (2010). What's happening in the mathematical Sciences (Vol. 8): American Mathematical Soc.

Noor, A., & Hu, Z. (2010). Metamaterial Electromagnetic Absorbers and Plasmonic Structures: University of Manchester.

Nordin, M. W., Islam, M. T., & Misran, N. (2012). A compact wideband coplanar waveguide fed metamaterial-inspired patch antenna for wireless application. Applied Physics A, 109(4), 961-965.

Ochiai, T., Leonhardt, U., & Nacher, J. (2008). A novel design of dielectric perfect invisibility devices. Journal of Mathematical Physics, 49(3), 032903.

Ou, J.-Y., Plum, E., Zhang, J., & Zheludev, N. I. (2014). Erratum: An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature nanotechnology, 9(6), 487.

Paschotta, R. (2008). Encyclopedia of laser physics and technology (Vol. 1): Wiley-vch Berlin.

Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85(18), 3966.

Pendry, J. B., Holden, A., Stewart, W., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76(25), 4773.

Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques, 47(11), 2075-2084.

Pendry, J. B., Schurig, D., & Smith, D. R. (2006). Controlling electromagnetic fields. science, 312(5781), 1780-1782.

Prudêncio, F. I. R. ELECTROMAGNETIC EFFECTS OF METAMATERIALS WITH NEGATIVE PARAMETERS.

Qiao, L., Han, X., Gao, B., Wang, J., Wen, F., & Li, F. (2009). Microwave absorption properties of the hierarchically branched Ni nanowire composites. Journal of Applied Physics, 105(5), 053911.

Ramakrishna, S. A. (2005). Physics of negative refractive index materials. Reports on progress in physics, 68(2), 449.

Rizwan, M., Mahmood, T., Rafique, H., Tanveer, M., & Haider, S. F. (2016). Design of a negative refractive index material based on numerical simulation. Chinese Journal of Physics, 54(4), 587-591.

Schurig, D., Mock, J., Justice, B., Cummer, S. A., Pendry, J. B., Starr, A., & Smith, D. (2006). Metamaterial electromagnetic cloak at microwave frequencies. science, 314(5801), 977-980.

Shalaev, V. M. (2007). Optical negative-index metamaterials. Nature photonics, 1(1), 41.

Shalaev, V. M., Cai, W., Chettiar, U. K., Yuan, H.-K., Sarychev, A. K., Drachev, V. P., & Kildishev, A. V. (2005). Negative index of refraction in optical metamaterials. Optics letters, 30(24), 3356-3358.

Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of refraction. science, 292(5514), 77-79.

Sievenpiper, D., Schaffner, J., Lee, J., & Livingston, S. (2002). A steerable leaky-wave antenna using a tunable impedance ground plane. IEEE Antennas and Wireless Propagation Letters, 1(1), 179-182.

Singh, G., & Marwaha, A. (2015). A review of metamaterials and its applications.

Smith, D., Mock, J., Starr, A., & Schurig, D. (2005). Gradient index metamaterials. Physical Review E, 71(3), 036609.

Smith, D., Schurig, D., & Pendry, J. (2002). Negative refraction of modulated electromagnetic waves. Applied Physics Letters, 81(15), 2713-2715.

Smith, D. R., Padilla, W. J., Vier, D., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), 4184.

Smith, D. R., Pendry, J. B., & Wiltshire, M. C. (2004). Metamaterials and negative refractive index. science, 305(5685), 788-792.

Smolyaninov, I. I., Hung, Y.-J., & Davis, C. C. (2007). Magnifying superlens in the visible frequency range. science, 315(5819), 1699-1701.

Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of and μ. Soviet physics uspekhi, 10(4), 509.

Yu, A., Yang, F., & Elsherbeni, A. Z. (2008). A dual band circularly polarized ring antenna based on composite right and left handed metamaterials. Progress In Electromagnetics Research, 78, 73-81.

Zhang, S., Fan, W., Minhas, B., Frauenglass, A., Malloy, K., & Brueck, S. (2005). Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Physical review letters, 94(3), 037402.

Zhang, S., Fan, W., Panoiu, N., Malloy, K., Osgood, R., & Brueck, S. (2005). Experimental demonstration of near-infrared negative-index metamaterials. Physical review letters, 95(13), 137404.

Zhang, X., & Liu, Z. (2008). Superlenses to overcome the diffraction limit. Nature materials, 7(6), 435.


Refbacks

  • There are currently no refbacks.