Open Access Open Access  Restricted Access Subscription or Fee Access

Expedition to Nanosynthesis: A Review

P. Chowdhury, A. Banerjee, U. Gangopadhyay, S. Roy

Abstract


Semiconducting metal oxide (like SnO2, ZnO, Ga2O3, Co3O4,TiO2, WO3, etc.) based gas sensors are widely used for the detection of the gases like H2, CO, Nox, CH4 and other hydrocarbons due to its smaller particle size as well as higher surface to volume ratio. Presently several nanoforms of metal oxides like rods, combs, rings, springs, wires, belts, propellers are becoming popular in the field of optoelectronics, ultra-sensitive nanosized gas sensors, nanoresonators etc. for their interesting properties compared to their bulk counterpart. These distinctive features of nanostructures definitely demonstrate that metal oxides are probably the richest family of nanostructures amongst all materials. Nanocrystalline thin films of metal oxide can be produced by different methods like sputtering, spray pyrolysis, CVD, sol–gel, etc. This article provides a comprehensive review of current research activities that concentrate on synthesis of nanostructures based on nanotubes, nanorods, nanosprings, and nanowires. Most emphasis has been given on the experimental principle that is synthesis techniques with some important parameters. Synthesis procedures are elaborated. This review is aimed for the direction towards which future research on nanostructured sensors might be directed. Keywords: nanobelts, nanorods, nanosprings, nanotubes, nanowires

Full Text:

PDF

References


REFERENCES

Liu X., Zheng M., Lv Y., et al. Large-scale synthesis of high-content Fe nanotubes/nanorings with high

magnetization by H2 reduction process, Mater Res Bull. 2013; 48: 5003–7p.

Cui L., Gu H.C., Xu H., et al. Synthesis and characterization of super-paramagnetic composite nanorings. Mater Lett Vol. 2006; 60: 2929–32p.

Wang Z.L. Piezoelectric nanostructures: from growth phenomena to electric nanogenerators, MRS Bull Vol. 2007; 32: 109–16p.

Wang Z.L. Zinc oxide nanostructures: growth, properties and applications, J Phys Cond Matter. 2004; 16: R829–58p.

Hughes W.L., Wang Z.L. Formation of piezoelectric single-crystal nanorings and nanobows, J Am Chem Soc. 2004; 126(21): 6703–9p.

Ding Y., Kong X.Y., Wang Z.L. Doping and planar defects in the formation of single-crystal ZnO nanorings, Phys Rev B. 2004; 70: 235408p.

Hughes W.L., Wang Z.L. Controlled synthesis and manipulation of ZnO nanorings and nanobows, Appl Phys Lett. 2005; 86: 043106p.

Wang Z.L. Nanostructures of zinc oxide. Mater Today. 2004; 6: 26–33p.

Kong X.Y., Wang Z.L. Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals, Appl Phys Lett. 2004; 84: 975p.

Phatak C., Liu Y., Begum Gulsoy E., et al. Visualization of the magnetic structure of sculpted three-dimensional cobalt nanospirals, Am Chem Soc Nano Lett. 2014 14: 759–64.

Zhang L., Dong L., Bell D.J., et al. Fabrication and characterization of freestanding Si/Cr micro and nanospirals, Microelectr Eng. 2006; 83: 1237–40p.

Houmadi S., Habtoun S., Dedovet D., et al. Synthesis and elastic properties of SiO2 nanotubes and helical nanosprings template from organic amphiphilic self-assemblies through inorganic transcription, IEEE Solid State Sensor A, Actuat Microsyst. 2013; 952–955.

Shehadeha M., Ebrahimia N., Ochigboa A. Predicting the type of nanostructure using data mining techniques and multinomial logistic regression, Proc Comput Sci Complex Adaptive Syst. 2012; 12: 392–7p.

Wang Z.L., Kong X.Y., Zuo J.M. Induced growth of asymmetric nanocantilever arrays on polar surfaces, Phys Rev Lett. 2003; 91: 185502.

Kong X.Y., Wang Z.L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts, Nano Lett. 2003; 3: 1625–31p.

Wang L., Major D., Paga P., et al. High yield synthesis and lithography of silica-based nanospring mats.IOP Publishing Ltd, Nanotechnology. 2006; 17, doi:10.1088/0957-4484/17/11/S12.

Bell D.J., Sun Y., Zhang L., et al. Three-dimensional nanosprings for electromechanical sensors, Conf Solid-State Sensors, Actuators Microsyst. 2006; 130–131: 54–61p.

Wang Z.L. Novel zinc oxide nanostructures discovery by electron microscopy, J Phys: Conf Ser. 2006; 26: 1–6p.

Pan X.F., Lui X., Bermak A., et al. Self-gating effect induced large performance improvement of ZnO nanocomb gas sensors, ACS Nano. 2013; 7: 9318–24p.

Xu T., Ji P., He M., et al. Growth and structure of pure ZnOMicro/nanocombs, J Nanomater. Article ID 797935.

Wang Z.L., Kong X.Y., Ding Y., et al. Semiconducting and piezoelectric oxide nanostructures induced by polar

surfaces, Adv Funct Mater. 2004; 14: 943–56p.

Lim Y.S., Park J.W., Hong S.T., Carbothermal synthesys of ZnO nanocomb structures, Mater Sci Eng. 2006; 129: 100–3p.

Zhuo R.F., Feng H.T., Liang Q., et al. Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of znonanocombs. J Phys D: Appl Phys. 2008; 41: 185405 (13pp).

24.Li X., Xu C.-X., Zhu G.-P., et al. Disc-capped ZnO nanocombs, Chin Phys Lett. 2007; 24: 3495–8p.

Ma C., Ding Y., Moore D., et al. Single-crystal CdSe nanosaws, J Am Chem Soc. 2003; 126: 708–9p.

Fan H.J., Scholz R., Dadgar A., et al. A low-temperature evaporation route for ZnO nanoneedles and nanosaws, Appl Phys. 2005; A80: 457–60p.

Ma C., Wang Z.L. Road map for controlled synthesis of CdSe nanowires, Nanobelts Nanosaws. 2005; 17: 1–6p.

Kong X.Y., Ding Y., Wang Z.L. Metal−semiconductor Zn−ZnO core−shell nanobelts and nanotubes, J Phys Chem B. 2004; 108: 570–4p.

Hu J.Q., Li Q., Meng X.M., et al. Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes chemistry of material. 2002; 15: 305–8p.

Wu G.S., Xie T., Yuan X.Y., et al. Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process, Solid State Commun.. 2005; 134: 485p.

Lee K.B., Kang H.S., Kwon H. Formation of ZnO nanotubes from Zn/ZnO cables by thermal evaporation, Met Mater Int. 2010; 16: 799–805p.

Xing Y.J., Xi Z.H., Xue Z.Q., et al. Optical properties of the ZnO nanotubes synthesized via vapor phasegrowth, Appl Phys Lett. 2003; 83: 1689–91p.

Hong Y.J., Jeon J.-M., Kim M., et al. Structural and optical characteristics of GaN/ZnO coaxial nanotube heterostructre arrays for light emitting devices applications, N J Phys. 2009; 11: 13p.

Qiu J., Jin Z., Liu Z., et al. Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol–gel process, Thin Solid Films. 515: 2897–2902p.

Wang Z.L., Gao R.P., Pan Z.W., et al. Nano-scale mechanics of nanotubes, nanowires, and nanobelts, Adv Eng Mater. 2001; 3: 657–61p.

Beranek R., Hildebrand H., Schmuki P, et al. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes, Electrochem Solid-State Lett. 2003; 6: B12–14p.

Zhang D.F., Sun L.D., Yin J.L., et al. Low-temperature fabrication of highly crystalline SnO2 nanorods, Adv Mater. 2003; 15: 1022–25p.

Lai M., Martinez J.A.G., Grätzel M., et al. Preparation of tin dioxide nanotubes via electro synthesis in a template, J Mater Chem. 2006; 16: 2843–45p.

Kim W.-S., Lee B.-S., Kim D.-H., et al. SnO2 nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance, Nanotechnology. 2010; 21, doi: 10.1088/0957-4484/21/24/245605.

Liu B., Zeng H.C., Salt-assisted deposition of SnO2 on α-MoO3 nanorods and fabrication of polycrystalline SnO2 nanotubes, J Phys Chem B. 2004; 108: 5867–74p.

Ye J., Zhang H., Yang R., et al. Morphology controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates

and their applications in lithium-ion batteries, 2010; 6: 296–306.

Liu Y., Jiao Y., Qu F., et al. Research article facile synthesis of template-induced SnO2 nanotubes, J Nanomater. 2013; Article ID 610964, doi: 10.1155/2013/610964.

Chen J.-M., Hsieh C.-T., Hung S.-W., et al. Electrochemical characteristics of SnO2 and SiO2 nanotubes prepared by template synthesis, Mater Res Lab. 3:5:2. 44. Varghese O.K., Paulose M., Grimes C.A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells, Nat Nanotechnol. 2006; 4: 592–7p. 45. Wang J., Zhiqun L., Anodic formation of ordered TiO2 nanotube arrays: Effects of electrolyte temperature and anodization potential, J Phys Chem C. 2009; 113: 4026–30p.

Li Z., Ding D., Liu Q., et al. Hydrogen sensing with Ni-doped TiO2, Nanotubes Sens. 2013; ISSN 1424-8220: 8393-8402.

Wouter Maijenburg A., Veerbeek J., de Putter R., et al. Electrochemical synthesis of coaxial TiO2–Ag nanowires and their application in photocatalytic water splitting, J Mater Chem A. 2014; 8: 2648–56p.

Huang Y.J., Pandraud G, Sarro P.M. The atomic layer deposition array defined by etch-back technique: a new method to fabricate TiO2 nanopillars, nanotubes and nano channel arrays, Nanotechnology. 2012; 23: 485306.

Chang Y.H., Liu C.M., Chen C., et al. The heterojunction effects of TiO2 nanotubes fabricated by atomic layer deposition on photocarrier transportation direction, Nanoscale Res Lett. 2012; 7(231): 1–7p.

Foong T.R.B, Shen Y., Hu X., et al. Template-directed liquid ald growth of TiO2 nanotube arrays: properties andpotential in photovoltaic devices, Adv Funct Mater. 2010; 20(9): 1390–96p.

Zamudio Torres I., Pérez Bueno J.J., Meas Vong Y. Process of growth TiO2 nanotubes by anodization in an organic media, J Mater Chem. 2014; 8: 887–93p.

Galstyan V., Comini E., Faglia G., et al. TiO2 Nanotubes: recent advances in synthesis and gas sensing properties, Sensors. 2013; 13: 14813–38p.

Patent WO2007028972 A1, invs: Imai H., Takei Y., Shimizu K., et al. Synthesis of pure rutile structure titanium oxide nanostructures, J Mater. 1999.

Patzke G.R., Krumeich F., Nesper R., et al. Oxidic nanotubes and nanorods–anisotropic modules for a future nanotechnology, Angew Chem Int Ed. 2002; 41(14): 2446–61p.

Hoyer P., Formation of a titanium dioxide nanotube array, Langmuir. 1996 12(6): 1411–13p.

Gong D., Grimes C.A., Varghese O.K., et al. Synthesis and applications of titanium oxide nanotubes, J Mater Res. 2001; 16: 3331–4p.

Zhao L., Yu J., Fan J., et al. Dye-sensitized solar cells based on ordered 1-D nanostructures, Electrochem Commun. 2009; 11(10): 2052–55p.

Park J.-H., Choi Y.-J., Park J.-G., Evolution of nanowires, nanocombs, and nanosheets in oxide semiconductors with variation of processing conditions, J Eur Ceram Soc. 2005; 25(12): 2037–40p.

Wan Q., Li Q.H., Chen Y.J., et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl Phys Lett. 2004; 84: 3654, doi:10.1063/1.1738932.

Zeng Y.J., Ye Z.Z., Xu W.Z., et al. Well-aligned ZnO nanowires grown on Si substrate via metal-organic chemical vapor deposition, Appl Surf Sci. 2005; 250(1–4): 280–3p.

Bin Z., Shaomin Z., Bing L., et al. Fabrication and green emission of ZnO nanowire arrays, Sci China Ser E. 2009; 15( 4): 883–7p.

Yang P., Yan H., Mao S., et al. Controlled growth of ZnO nanowires and their optical properties, Adv Funct Mater. 2002; 12(5): 323–331p.

Cuellar Murilloa G.A., Bojorgea C.D., Herediaa E.A., et al. Study of the substrate influence in ZnO nanowires oriented growth, Proc Mater Sci. 2013; 8: 630–4p.

Miles D.O., Cameronb P.J., Mattia D., Hierarchical 3D ZnO nanowire structures via fast anodization of zinc, J Mater Chem A. 2015;pp: 17569–77p, doi: 10.1039/C5TA03578C.

Wang J.X., Chen H.Y., Gao Y., et al. Synthesis and characterization of In2O3/SnO2 hetero-junction beaded nanowires, J Cryst Growth. 2005; 284(1–2): 73–9p.

Wagner R.S., Ellis W.C. Vapor-liquid-solid mechanism of single crystal growth, Appl Phys Lett. 1964; doi: 10.1063/1.1753975.

Thong L.V., Loan L.T.N., Van Hieu N. Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures, Sens Actuators. 2010; 150(1): 112–9p.

Lu M.L., Weng T.M., Chen J.-Y., et al. Ultrahigh-gain single SnO2 nanowire photo detectors made with ferromagnetic nickel electrodes, NPG Asia Mater. 2012; doi:10.1038/am.2012.48.

Wei D., Shen Y., Li M., et al. Synthesis and characterization of single-crystalline SnO2 nanowires, J Nanomater. 2013; Article ID 761498, doi:10.1155/2013/76149.

Zhang G., Liu N. A novel method for massive synthesis of SnO nanowires, Bull Mater Sci. 2013; 36(6): 953p.

Tian W.C., Ho Y.-H., Chen C.-H., Sensing performance of precisely ordered TiO2 nanowire gas sensorsfabricated by electron-beam, Lithography. 2013; 13(1): 865–74p.

Lei Y., Zhang L.D., Meng G.W., et al. Preparation and photoluminescence of highly ordered TiO2 nanowirearrays, Appl Phys Lett. 2001; 78, doi.1 0.1063/1.1350959.

ShangP., Shang J.K. Synthesis of single-crystal TiO2 nanowire using titanium monoxide powder by thermal evaporation, J Mater Sci Technol. 2012; 28: 385–90p.

Abbas Sadeghzadeh Attar, Zahra Hassani, Fabrication and growth mechanism of single-crystalline rutile

TiO2 nanowires by liquid-phase deposition process in a porous alumina template, J Mater Sci Technol. 31: 828–833.

Wei Z., Yao Y., Huang T., et al. Solvothermal growth of well-aligned TiO2 nanowire arrays for dye-sensitized solar cell, Int J Electrochem Sci. 2011 6: 1871–9p.

Kong B., Tang J., Wu Z.X., et al. Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces, NPG Asia Mater. 2014; 6: 117p. doi:10.1038/am.2014.56.


Refbacks

  • There are currently no refbacks.