Open Access Open Access  Restricted Access Subscription or Fee Access

A Brief Review: Science at Nanoscale

G M Nazeruddin, S R PRASAD, Y I SHAIKH, N R PRASAD

Abstract


Nanotechnology is the manipulation of matters at atomic, molecular or supramolecular level. It is believed that nanotechnology developed after the famous speech of Richard Feynman in 1959. But here we have tried to show its earlier existences. Also the properties at nano scale have been discussed in detail. It is tried to study the reasons for change in properties at nanoscale. The methods of fabrication of nanomaterials are also studied. The possible applications of nanomaterials are also enlisted. Keywords: Nanoscale Science, synthesis of nanomaterials, Antimicrobial Activity, Supercapacitor, catalyst

Full Text:

PDF

References


REFERENCES

Miller, D. Stone age or plastic age? Archaeological Dialogues. 2007; 14(01), 23–27p.

Tsung, C. K., Hong, W. B., Shi, Q. H et.al. Shape & Orientation‐Controlled Gold Nanoparticles Formed within Mesoporous Silica Nanofibers. Advanced Functional Materials. 2006; 16(17): 2225–2230p.

Love, J. C., Estroff, L. A., Kriebel, J. K., et.al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews, 2005; 105(4): 1103–1170p.

Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A., De Smet, P., Haszler, A., & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1), 37–49p.

Jones, R. M. Mechanics of Composite Materials. CRC Press. 1998.

Callister, W. D., Rethwisch, D. G. Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons. 2012.

Feynman, R. P. There's plenty of room at the bottom. Engineering and Science. 1996; 23(5): 22–36p.

Arivalagan, K., Ravichandran, S., Rangasamy, K., et.al. Nanomaterials and its Potential Applications. International Journal of ChemTech Research, 2011; 3(2).

Raghava Hebbar N et.al. (2012). A Pharmaceutico–Analytical Study of Rajata Bh Ravi, B. (2004). Investment Casting Development: Ancient and Modern Approaches. 2012.

Ravi, B. Asma and Its Evaluation for Anti-Microbial Activity. In Proceedings of the National Conference on Investment Casting: NCIC 2003 (p. 2). Allied Publishers.

Ravi, B. Investment Casting Development: Ancient and Modern Approaches. In Proceedings of the National Conference on Investment Casting: NCIC 2004 (p. 2). Allied Publishers.

Adlakha-Hutcheon, G., Khaydarov, R., Korenstein, et.al. Nanomaterials in Nanotechnology. In Nanomaterials: Risks and Benefits 2009; 195–207p.

Dai, L. Carbon nanotechnology: recent developments in chemistry, physics, materials science and device applications. Elsevier. 2006.

Stix, G. Little big science. Scientific American, 2001; 285(3): 26–31p.

Roco, M. C. From vision to the implementation of the US National Nanotechnology Initiative. Journal of Nanoparticle Research. 2001; 3(1): 5–11p.

Park, H., Cannizzaro, C., Vunjak-Novakovic, et.al. Nanofabrication and Microfabrication of functional materials for tissue engineering. Tissue engineering, 2007; 13(8): 1867–1877p.

Maye, M. M., Lou, Y., & Zhong, C. J. Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation. Langmuir, 2000; 16(19): 7520–3p.

Sharma, K. R. Nanostructuring Operations in Nanoscale Science and Engineering. McGraw-Hill. 2010.

Friend, R., Burroughes, J., & Shimoda, T. Polymer diodes. Physics world, 1999; 12(6): 35–40p.

Richerson, D. Modern ceramic engineering: properties, processing, and use in design. CRC press. 2005.

Carpi, F., De Rossi, D., Kornbluh, R., et.al. Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier. 2011.

Wang, Z. L., & Kang, Z. C. Functional and smart materials: structural evolution and structure analysis. Springer. 1998

Ozin, G. A., Arsenault, A. C., & Cademartiri, L. Nanochemistry: a chemical approach to nanomaterials. Royal Society of Chemistry. 2009.

Banerjee, R., Furukawa, H., Britt, D., et.al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. Journal of the American Chemical Society, 2009; 131(11): 3875–77p.

Fesmire, S. John Dewey and moral imagination: Pragmatism in ethics. Indiana University Press.2003.

Taniguchi, N. (1974, February). On the basic concept of nanotechnology. In Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering 1974; 18–23p.

Chaudhuri, R. G. (2009). Synthesis and characterization of SiAgBr core shell nanoparticles (Doctoral dissertation, M. Sc. Thesis) 2009.

Nazari, Z. E., & Iranshahi, M. (2011). Biologically active sesquiterpene coumarins from Ferula species. Phytotherapy Research, 2011; 25(3), 315–323p.

Kapoor, S. S. Dasam Granth. Hemkunt Press.

Savanur, I. A. Physico-Chemical Analysis And Evaluation Of Antibacterial And Antifungal Activity Of Arogyavardhini Vati.2010.

Hahnemann, S. Organon of medicine. B. Jain publishers.2002.

Hayat, M. A. Colloidal gold: principles, methods, and applications. Elsevier. 2012.

Galarraga Soto, E., Luna Hermosa, G. Criterios de diseño para servicios básicos mínimos de agua potable en barrios suburbanos. Revista técnica informativa. XIX aniversario IEOS, 1984; 26–30p.

Freestone, I., Meeks, N., Sax, M., & Higgitt, C. The Lycurgus cup—a roman nanotechnology. Gold Bulletin. 2007; 40(4): 270–277p.

Link, S., Wang, Z. L., & El-Sayed, M. A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. The Journal of Physical Chemistry B. 1999; 103(18): 3529–3533p.

Steinke, J. M., & Shepherd, A. P. Comparison of Mie theory and the light scattering of red blood cells. Applied Optics. 1998; 27(19); 4027–4033p.

Singh, H., Pal Singh, B. “The next big thing is the really small. Nanotechnology: A conceptual study”. International Journal of Information Technology & Computer Sciences Perspectives. 2013; 2(3): 606–612p.

Kelly, K. L., Coronado, E., Zhao, L. L., et.al.. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B. 2003; 107(3), 668–677p.

Eckert, J., Das, J., Pauly, S., et.al. Mechanical properties of bulk metallic glasses and composites. J. Mater. Res, 2007; 22(2), 285–301p.

F Dorfman, B. Some Trends and Challenges in Nanomechanics: Up-To-Date Review of Selected Patents and Patent Applications. Recent Patents on Mechanical Engineering. 2010; 3(3), 191–205p.

Lanas, J., Alvarez-Galindo, J. I. Masonry repair lime-based mortars: factors affecting the mechanical behavior. Cement and concrete research. 2003; 33(11): 1867–1876p.

Ovid’ko, I. A. Superplasticity and ductility of superstrong nanomaterials. Rev. Adv. Mater. Sci, 2005; 10(2), 89p.

Lokwani, P. Magnetic particles for drug delivery: an overview. Int J Res Pharm Biomed Sci. 2011; 2(2): 465–473p.

Barnes, W. L., Dereux, A., & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature. 2003; 424(6950): 824–830p.

Kumar, K. A., Sajna, M. S., Thomas, V., Joseph, C., & Unnikrishnan, N. V. Plasmonic and Energy Studies of Ag Nanoparticles in Silica-Titania Hosts. Plasmonics. 2014; 9(3): 631–636p.

Yushanov, S. P., Gritter, L. T., Crompton, J. S., et.al. Surface Plasmon Resonance. In COMSOL Conference. 2012.

Shipway, A. N., Katz, E., Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem. 2000; 1(1): 18–52p.

Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996; 12(3): 788–800p.

Chang, Y. A. On the temperature dependence of the bulk modulus and the Anderson-Grüneisen parameter δ of oxide compounds. Journal of Physics and Chemistry of Solids, 1967; 28(4): 697–701p.

Yguerabide, J., & Yguerabide, E. E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory. Analytical biochemistry, 1998; 262(2), 137–156p.

Luo, X., Qiu, T., Lu, W., et.al. Plasmons in graphene: Recent progress and applications. Materials Science and Engineering: R: Reports, 2013; 74(11), 351–376p.

Kawabata, A., & Kubo, R. Electronic properties of fine metallic particles. II. Plasma resonance absorption. Journal of the Physical Society of Japan, 1996; 21(9): 1765–1772p.

Link, S., & El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B. 1999; 103(21), 4212–17p.

Link, S. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 1999; 103(21), 4212–17p.

Burda, C., Chen, X., Narayanan, R., et.al. Chemistry and properties of nanocrystals of different shapes. Chemical reviews, 2005; 105(4), 1025–1102p.

Halas, N. J., Lal, S., Chang, W. S., et.al. Plasmons in strongly coupled metallic nanostructures. Chemical reviews, 2011; 111(6), 3913–3961p.

Bansmann, J., Baker, S. H., Binns, C., et.al. Magnetic and structural properties of isolated and assembled clusters. Surface Science Reports. 2005; 56(6), 189–275p.

Gupta, A., & Sun, J. Z. Spin-polarized transport and magneto resistance in magnetic oxides. Journal of magnetism and magnetic materials, 1999; 200(1): 24–43p.

Tarling, D., Hrouda, F. (Eds.). Magnetic anisotropy of rocks. Springer. 1993.

Ju-Nam, Y., & Lead, J. R. (). Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment. 2008; 400(1): 396–414p.

Mahmoudi, M., Hofmann, H., Rothen-Rutishauser, B et.al. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chemical reviews. 2011; 112(4): 2323–2338p.

Pankhurst, Q. A., Connolly, J., Jones, S. K., et.al. Applications of magnetic nanoparticles in biomedicine. Journal of physics D: Applied physics. 2003; 36(13): 167p.

Stensberg, M. C., Wei, Q., McLamore, E. S. et.al. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine. 2011; 6(5): 879–898p.

Lin, A. W., Halas, N. J., Drezek, R. A., et.al. Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. Journal of biomedical optics. 2005; 10(6): 064035p.

Prum, R. O., Quinn, T., Torres, R. H. Anatomically diverse butterfly scales all produce structural colors by coherent scattering. Journal of Experimental Biology. 2006; 209(4): 748–765p.


Refbacks

  • There are currently no refbacks.