Open Access Open Access  Restricted Access Subscription or Fee Access

Hydroxyapatite, Synthesis of Numerous Cds Quantum Dot Composite Material: A Review

Binoy Bera

Abstract


Hydroxyapatite is one of most interesting material which is used as chemical sensor for detecting different hazardous gases. It is a bio-ceramic and non-toxic maerial for which it is widely used in bio-engineering. On the other side, CdS quantum dot is very important material in optoelectronic device fabrication for its fascinating optical, physical and electronic properties. Furthermore, scientist are also doing their research very widely on CdS quantum dot for their better fluorescence and optical properties. Here in this paper, synthesis procedure of different composite material with CdS quantum dot has been reviewed. A brief review about hydroxyapatite and its application were also described. Different procedure for synthesis of hydroxyapatite material has also been reviewed.

Keywords


Hydroxyapatite, gas sensor, bio-compatibility, CdS quantum dot, MoS2, Porous silicon, Polyvinylidene fluoride.

Full Text:

PDF

References


VardanGalstyan, Elisabetta Comini, Camilla Baratto, Guido Faglia, Giorgio Sberveglieri. Nanostructured ZnO chemical gas sensors. Ceramics International. Volume 41, Issue 10, Part B, December 2015, Pages 14239-14244.

G.Korotcenkov, B.K.Cho. Thin film SnO2-based gas sensors: Film thickness influence. Sensors and Actuators B: Chemical. Volume 142, Issue 1, 12 October 2009, Pages 321-330.

Wojciech Maziarz, Anna Kusior and Anita Trenczek-Zajac. Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases. Beilstein J. Nanotechnol. 2016, 7, 1718–1726.

Fang Wang, Hairong Li, Zhaoxin Yuan, Yongzhe Sun, Fangzhi Chang, Heng Deng, Longzhen Xie and Haiyan Li. A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method. RSC Adv., 2016,6, 79343-79349 .

M.Hübner, C.E.Simion, A.Haensch, N.Barsan, U.Weimar. CO sensing mechanism with WO3 based gas sensors. Sensors and Actuators B: Chemical. Volume 151, Issue 1, 26 November 2010, Pages 103-106.

D. N. Suryawanshi, D.R.Patil, L. A. Patil. Fe2O3-activated Cr2O3 thick films as temperature dependent gas sensors. Sensors and Actuators B: Chemical. Volume 134, Issue 2, 25 September 2008, Pages 579-584.

S. N. Malchenko, Y. N. Lychkovsky, M. V. Baykov. In2O3-based gas sensors. Sensors and Actuators B: Chemical. Volume 13, Issues 1–3, May 1993, Pages 159-161.

A. Kukla, Y.M. Shirshov, S. Piletsky, Ammonia sensors based on sensitive polyaniline films, Sensors Actuators B Chem. 37 (1996) 135–140.

S.C. Hernandez, D. Chaudhuri, W. Chen, N.V. Myung, A. Mulchandani, Single polypyrrole nanowire ammonia gas sensor, Electroanalysis 19 (2007) 2125–2130.

P. D. Shirbhate, S. P. Yawale and S. V. Pakade. Pth – PEO polymer composite as CO2 gas sensor. International journal of Research in engineering and Applied Sciences. Volume – 3, issue – 01, Jan 2015.

L. Geng, Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S, Synth. Met. 160 (2010) 1708–1711.

L.N. G, S.R. W, P. Le, Y.Q. Z, S.M. Z, S.H. W, Preparation and gas sensitivity study of polypyrrole/tin oxide hybrid material, Chin. J. Inorg. Chem. 7 (2005) 977–981.

L. Geng, Y. Zhao, X. Huang, S.Wang, S. Zhang,W. Huang, S.Wu, The preparation and gas sensitivity study of polypyrrole/zinc oxide, Synth. Met. 156 (2006) 1078–1082.

K. Suri, S. Annapoorni, A. Sarkar, R. Tandon, Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites, Sensors Actuators B Chem. 81 (2002) 277–282.

K. Hosono, I.Matsubara, N. Murayama, S.Woosuck, N. Izu, Synthesis of polypyrrole/ MoO3 hybrid thin films and their volatile organic compound gas-sensing properties, Chem. Mater. 17 (2005) 349–354.

S.R. Nalage, A.T. Mane, R.C. Pawar, C.S. Lee, V.B. Patil, Polypyrrole–NiO hybrid nanocomposite films: highly selective, sensitive, and reproducible NO2 sensors, Ionics 20(2014) 1607–1616.

L.N. Geng, Gas sensitivity of polyaniline/SnO2 hybrids to volatile organic compounds, Trans. Nonferrous Metals Soc. China 19 (2009) 678–683.

H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Fabrication and gas sensitivity of polyaniline– titanium dioxide nanocomposite thin film, Sensors Actuators B Chem. 125 (2007) 644–650.

Zhong, H.; Yuan, R.; Chai, Y.; Li, W.; Zhong, X. Talanta.2011, 85, 104. DOI:10.1016/j.talanta.2011.03.040.

Heeger, A.J. J. Phys. Chem. B.2001, 105(36), 8475. DOI: 10.1002/1521-3773(20010716)40.

Konyushenko, E.N.; Stejskal, J.; Trchova, M.; Hradil, J.; Kovarova, J.; Prokes, J.; Cieslar, M.; Hwang, J.Y.; Chen, K.H.; Sapurina, I. Polymer. 2006, 47(16), 5715. DOI:10.1016/j.polymer.2006.05.059.

Peng, C.; Jin, J.; Chen, G.Z. Electrochim. Acta. 2007, 53(2), 525. DOI:10.1016/j.electacta.2007.07.004.

Jiang, J.; Kucernak, A. Electrochim. Acta. 2002, 47(15), 2381. DOI:10.1016/S0013-4686(02)00031-2.

Chen J, Wang Y, Chen X, Ren L, Lai C, He W, Zhang Q. A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders. Mater Lett 2011;65:1923-1926.

Yingjun Wang, Shuhua Zhang, Kun Wei, Naru Zhao, Jingdi Chen, Xudong Wang. Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Materials Letters. Volume 60, Issue 12, June 2006, Pages 1484-1487.

B VAIDHYANATHAN and K J RAO. Rapid microwave assisted synthesis of hydroxyapatite. Bull. Mater. Sci., Vol. 19, No. 6, December 1996, pp. 1163-I 165.

M. AIZAWA, T. HANAZAWA, K. ITATANI, F. S. HOWELL, A. KISHIOKA. Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique. JOURNAL OF MATERIALS SCIENCE 3 4 (1 9 9 9 ) 2865 – 2873.

Naruporn MONMATURAPOJ. Nano-size Hydroxyapatite Powders Preparation by Wet-Chemical Precipitation Route. Journal of Metals, Materials and Minerals. Vol.18 No.1 pp.15-20, 2008.

Somnuk Jarudilokkul, Wiwut Tanthapanichakoon, Virote Boonamnuayvittaya. Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloids and Surfaces A: Physicochemical and Engineering Aspects. Volume 296, Issues 1–3, 15 March 2007, Pages 149-153.

Wantae Kim, Fumio Saito. Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2. Ultrasonics Sonochemistry. Volume 8, Issue 2, April 2001, Pages 85-88.

Vu Thi Kim Lien et al 2009. Optical properties of CdS and CdS/ZnS quantum dots synthesized by reverse micelle method. J. Phys.: Conf. Ser. 187 012028.

S. Y. Ha, D. S. Yoo, I. G. Kim, M. S. Choo, G. W. Kim, E. S. Lee, and B. C. Lee. The Study On The Physical Properties Of CdS Quantum Dots Synthesized By Ligand Exchange in Cd2+Cd2+‐thiol Aqueous Solutions. AIP Conference Proceedings 1399, 235 (2011); https://doi.org/10.1063/1.3666341.

N. Qutub, S. Sabir. Optical, Thermal and Structural Properties of CdS Quantum Dots Synthesized by A Simple Chemical Route. Int. J. Nanosci. Nanotechnol., Vol. 8, No. 2, June 2012, pp. 111-120.

Simone Bertolazzi, Jacopo Brivio, Andras Kis (2011). Stretching and Breaking of Ultrathin MoS2. ACS Nano. 5 (12): 9703–9709. doi:10.1021/nn203879f.

T. Stephenson, Z. Li, B. Olsen, D. Mitlin (2014). Lithium Ion Battery Applications of Molybdenum Disulfide (MoS2) Nanocomposites. Energy Environ. Sci. 7: 209–31. doi:10.1039/C3EE42591F.

Peter Cannon (1959). Melting Point and Sublimation of Molybdenum Disulphide. Nature. 183 (4675): 1612–1613. doi:10.1038/1831612a0.

Martin Pumera, Graphene-based nanomaterials for energy storage, Energy Environ. Sci., 2011,4, 668-674. DOI:10.1039/C0EE00295J.

Yue Zhang, Qunwei Tang, Benlin He and Peizhi Yang. Graphene enabled all-weather solar cells for electricity harvest from sun and rain. J. Mater. Chem. A, 2016,4, 13235-13241. DOI:10.1039/C6TA05276B.

Gonçalo da Cunha Rodrigues, Pavel Zelenovskiy, Konstantin Romanyuk, Sergey Luchkin, Yakov Kopelevich & Andrei Kholkin. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 7:7572 doi: 10.1038/ncomms8572 (2015).

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, (2004-10-22). "Electric Field Effect in Atomically Thin Carbon Films". Science. 306 (5696): 666-669.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi and J. N. Coleman, Adv. Mater., 2011, 23, 3944–3948.

Lina Wang, Ying Ma, Min Yang, Yanxing Qi. Titanium plate supported MoS2nanosheet arrays for supercapacitorapplication. Applied Surface Science xxx (2016) xxx–xxx. http://dx.doi.org/10.1016/j.apsusc.2016.11.193.

Claudia Altavilla, Maria Sarno, and Paolo Ciambelli. A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (MdMo, W). Chem. Mater. 2011, 23, 3879–3885. dx.doi.org/10.1021/cm200837g.

K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , Y. Zhang , S. V. Dubonos , I. V. Grigorieva , A. A. Firsov , Science 2004 , 306 , 666 .

Fuguo Wang, Shiyong Song, Junyan Zhang (2009). Surface texturing of porous silicon with capillary stress and its superhydrophobicity. Chemical Communications (28): 4239. doi:10.1039/b905769b.

S. P. Low, K. A. Williams, L. T. Canham, N. H. Voelcker(2006). "Evaluation of mammalian cell adhesion on surface-modified porous silicon". Biomaterials. 27 (26): 4538–46. doi:10.1016/j.biomaterials.2006.04.015.

V. Lehmann, B. Jobst, Th. Muschik, A. Kux, V. Petrova-Koch. Correlation between optical properties and crystallite size in porous silicon. Japn. J. Appl. Phys. 1993, 32, 2095–2099.

Petra Granitzer and Klemens Rumpf. Porous Silicon—A Versatile Host Material. Materials (Basel). 2010 Feb; 3(2): 943–998. doi: 10.3390/ma3020943.

J. H. G. Owen, K. Miki, and D. R. Bowler. 2006. Self-assembled nanowires on semiconductor surfaces. J. Mat. Sci. 41(14): 4568–4603.

Y.-da, Yan, J. Zhang, T. Sun, Y.-c. Liang, and S. Dong. 2008. Fabrication of regular nanostructures on the surface of Si by AFM anodic oxidation. Harbin Gongye Daxue Xuebao, 40(7): 1055–1058.

Q. Ahsanulhaq, A. Umar, and Y. B. Hahn. 2007. Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties. Nanotechnology, 18(11): 115603/1–115603/7.

Z. A. K. Durrani and M. A. Rafiq. 2009. Electronic transport in silicon nanocrystals and nanochains. Microelectronic Engineering, 86(4–6): 456–466.

Kim H, Cho N. Morphological and nanostructural features of porous silicon prepared by electrochemical etching. Nanoscale Res. Lett. 2014; 7: 408.

B. Bera. Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique). Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-8, 2016.

B. Bera, Madhumita.Das Sarkar. Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept . IOSR Journal of Applied Physics (IOSR-JAP). Volume 9, Issue 3 Ver. I, PP 95-99.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Sensor Made of PVDF/graphene Electrospinning Fiber and Comparison between Electrospinning PVDF Fiber and PVDF/graphene Fiber. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-5, 2016.

Binoy Bera, Madhumita Das Sarkar. Gold Nanoparticle Doped PVDF Nanofiber Preparation of Concurrently Harvesting Light and Mechanical Energy. IOSR Journal of Applied Physics (IOSR-JAP).Volume 9, Issue 3 Ver. III (May - June 2017), PP 05-12.

Binoy Bera, Madhumita Das Sarkar. PVDF based Piezoelectric Nanogenerator as a new kind of device for generating power from renewable resources. IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE). Volume 4, Issue 2 (Mar. - Apr. 2017), PP 01-05.

Binoy Bera. Preparation of polymer nanofiber and its application. Asian journal of physical and chemical sciences. volume 2, issue 4, 1-4, 2017. article no. AJOPACS. 35651.

Binoy Bera. Literature Review on Triboelectric Nanogenerator. Imperial Journal of Interdisciplinary Research(IJIR). 2(10):1263-1271·January2016.

Binoy Bera. Preparation of MoS2 nanosheets and PVDF nanofiber. Asian journal of physical and chemical sciences. volume 2, issue 4, 1-9, 2017.article no. AJOPACS. 35176.

Binoy Bera. Nanoporous Silicon Prepared by Vapour Phase Strain Etch and Sacrificial Technique. IJCA Proceedings on International Conference on Microelectronic Circuit and System MICRO 2015(1):42-45, December 2015.

BinoyBera, Dipankar Mandal, Madhumita Das Sarkar. Porous Silicon and its Nanoparticle as Biomaterial: A Review. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-11, 2016. (4).

Binoy Bera. A Review on Polymer, Graphene and Carbon Nanotube: Properties, Synthesis and Applications. Imperial Journal of Interdisciplinary Research (IJIR). Vol-3, Issue-10, 2017.

Hari Sarkar, Binoy Bera, Sudakshina Kundu. Sleep Mode Transistor Sizing Effect of MTCMOS Inverter Circuit on Performance in Deep Submicron Technology. Global Journal of Trends in Engineering (GJTE). Vol(2)-Issue(4), 2015.

Binoy Bera, Madhumita Das Sarkar. Piezoelectric Effect, Piezotronics and Piezophototronics: A Review. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-11, 2016.


Refbacks

  • There are currently no refbacks.