Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis and Applications of ACNT-MoS2 Nanocomposite: A Review

Binoy Bera

Abstract


Recently amorphous carbon nanotube and their nanocomposites are most influenced research topic in the field of nanoscience and nanotechnology. Due to the presence of dangling bond in amorphous carbon nanotube, it is easily reacting with other nanomaterial to form into nanocomposites. For the beautiful electronic, physical and chemical properties of MoS2 nanosheets, ACNT-MoS2 nanocomposites are very much interested. Here in this paper, synthesis procedure of amorphous carbon nanotube-molybdenum disulphide nanocomposite has been reviewed. Some applications of ACNT-MoS2 nanocomposites were also described here.

Keywords


Amorphous carbon nanotube, MoS2, hydrothermal method, chemical route process, Liquid phase exfoliation, Eco-friendly, nanocomposites, ACNT-MoS2

Full Text:

PDF

References


S. Iijima. Helical microtubules of graphitic carbon. Nature 354, 56- 58.

G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J Amaratunga, and M. Chhowalla, 2008 Appl. Phys. Lett. 93, 233502 (2008).

Y. Liu, J. Tang, X. Chen, W. Chen,G. K.H. Pang, and J.H. Xin,“A wet-chemical route for the decoration of CNTs with silver nanoparticles,” Carbon, vol. 44, no. 2, pp. 381–383, 2006.

Z. Zanolli, R. Leghrib, A. Felten, J. Pireaux, E. Llobet, and J. Charlier, “Gas sensing with Au-decorated carbon nanotubes,”Journal of American Chemical Society, vol. 6, no. 5, pp. 4592–4599, 2011.

T. Zhaoet al. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes. Sci. Rep. 4, 5619; DOI:10.1038/srep05619 (2014).

D. J. Guo and H. L. Li, “Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution,” Carbon, vol. 43, no. 6, pp. 1259–1264, 2005.

B. Bera. Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique). Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-8, 2016.

B. Bera, Madhumita.Das Sarkar. Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept. IOSR Journal of Applied Physics (IOSR-JAP). Volume 9, Issue 3 Ver. I, PP 95-99.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Sensor Made of PVDF/graphene Electrospinning Fiber and Comparison between Electrospinning PVDF Fiber and PVDF/graphene Fiber. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-5, 2016.

Binoy Bera, Madhumita Das Sarkar. Gold Nanoparticle Doped PVDF Nanofiber Preparation of Concurrently Harvesting Light and Mechanical Energy. IOSR Journal of Applied Physics (IOSR-JAP). Volume 9, Issue 3 Ver. III (May-June 2017), PP 05-12.

Binoy Bera, Madhumita Das Sarkar. PVDF based Piezoelectric Nanogenerator as a new kind of device for generating power from renewable resources. IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE). Volume 4, Issue 2 (Mar.-Apr. 2017), PP 01-05.

Binoy Bera. Preparation of polymer nanofiber and its application. Asian journal of physical and chemical sciences. volume 2, issue 4, 1-4, 2017. article no. AJOPACS. 35651.

Binoy Bera. Literature Review on Triboelectric Nanogenerator. Imperial Journal of Interdisciplinary Research (IJIR). 2(10):1263-1271·January2016.

Binoy Bera. Preparation of MoS2 nanosheets and PVDF nanofiber. Asian journal of physical and chemical sciences. volume 2, issue 4, 1-9, 2017.article no. AJOPACS. 35176.

Binoy Bera. Nanoporous Silicon Prepared by Vapour Phase Strain Etch and Sacrificial Technique. IJCA Proceedings on International Conference on Microelectronic Circuit and System MICRO 2015(1):42-45, December 2015.

BinoyBera, Dipankar Mandal, Madhumita Das Sarkar. Porous Silicon and its Nanoparticle as Biomaterial: A Review. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-11, 2016. (4).

Binoy Bera. A Review on Polymer, Graphene and Carbon Nanotube: Properties, Synthesis and Applications. Imperial Journal of Interdisciplinary Research (IJIR). Vol-3, Issue-10, 2017.

Hari Sarkar, Binoy Bera, Sudakshina Kundu. Sleep Mode Transistor Sizing Effect of MTCMOS Inverter Circuit on Performance in Deep Submicron Technology. Global Journal of Trends in Engineering (GJTE). Vol(2)-Issue(4), 2015.

Binoy Bera, Madhumita Das Sarkar. Piezoelectric Effect, Piezotronics and Piezophototronics: A Review. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-11, 2016.

C. Martin (1995). "Template synthesis of electronically conductive polymer nanostructures". Acc Chem Res. 28 (2): 61–68. doi:10.1021/ar00050a002.

D. J. Guo and H. L. Li, “Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution,” Carbon, vol. 43, no. 6, pp. 1259–1264, 2005.

K. H. Tan and R. J. Mohd, “Surface structure and optical property of amorphous carbon nanotubes hybridized with cadmium selenide quantum dots,” Journal of Nanoparticle Research, vol. 15, no. 9, article 1920, 2013.

T. W. Ebbesen, P. M. Ajayan. Nature 1992, 358, 220.

A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley. Science 1996, 273, 483.

M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto. J. Phys. Chem. Solids 1993, 54, 1841.

K. Chang, W. Chen. L-Cysteine-assisted synthesis of layered MoS2/graphenecomposites with excellent electrochemical performances for lithium ionbatteries, ACS Nano 5 (2011) 4720–4728.

X. Zhou, Z. Wang, W. Chen, L. Ma, D. Chen, J.Y. Lee. Facile synthesis andelectrochemical properties of two dimensional layered MoS2/graphenecomposite for reversible lithium storage, J. Power Sources 251 (2014)264–268.

P. Seung-Keun, Y. Seung-Ho, W. Seunghee, Q. Bo, L. Dong-Chan, K.M. Kun, S.Yung-Eun, P. Yuanzhe. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ionbatteries, Dalton Trans. 42 (2012) 2399–2405.

Y. Shi, Y. Wang, J.I. Wong, A.Y.S. Tan, C.-L. Hsu, L.-J. Li, Y.-C. Lu, H.Y. Yang. Self-assembly of hierarchical MoSx/CNT nanocomposites (2&ltx<3): towards high performance anode materials for lithium ion batteries, Sci. Rep.3 (2013) 2169.

Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen. MoS2 nanoflowerswith expanded interlayers as high-performance anodes for sodium-Ionbatteries, Angew. Chem. Int. Ed. 53 (2014) 12794–12798.

R. R. Chianelli, E. B. Prestridge, T. A. Pecoraro, and J. P. DeNeufville. Science 203, 1105–1107 (1979).

J. L. Verble, T. J. Wietling, and P. R. Reed. Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2. Solid State Comm. 11, 941–944 (1972).

V. R. Surisetty, A. Tavasoli, and A. K. Dalai. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes. Appl. Catal. A-Gen. 365, 243–251 (2009).

Y. Ye, J. Chen, and H. Zhou. An investigation of friction and wear performances of bonded molybdenum disulfide solid film lubricants in fretting conditions. Wear 266, 859–864 (2009).

J. Yan, H. Zhou, P. Yu, L. Su, and L. Mao. A general electrochemical approach to deposition of metal hydroxide/oxide nanostructures onto carbon nanotubes. Electrochem. Commun. 10, 761–765 (2008).

C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, and H. Liu. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44, 1811–1815 (2009).

N. Elizondo-Villarreal, R. Vel´azquez-Castillo, D. H. Galv´an, A. Camacho, andM. Jos´e Yacam´an. Structure and catalytic properties of molybdenum sulfide nanoplatelets. Appl. Catal. A-Gen. 328, 88–97 (2007).

X. Zhang, B. Luster, A. Church, C. Muratore, A. A. Voevodin, P. Kohli, S. Aouadi, and S. Talapatra. Carbon Nanotube-MoS2 Composites as Solid Lubricants. Appl. Mater. Inter. 3, 735–739 (2009).

W. Li, E. Shi, J. Ko, Z. Chen, H. Ogino, and T. Fukuda. Hydrothermal synthesis of MoS2 nanowires. J. Cryst. Growth 250, 418–422 (2003).

K. P. Loh, H. Zhang, W. Z. Chen, and W. Ji. Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties. J. Phys. Chem. B. 110, 1235–1239 (2006).

L. Ma, L. M. Xu, X. Y. Xu, Y. L. Luo, andW. X. Chen. Synthesis and characterization of flowerlike MoS2 microspheres by a facile hydrothermal route. Mater. Lett. 63, 2022–2024 (2009).

G. Chu, G. Bian, Y. Fu, and Z. Zhang. Preparation and structural characterization of nano-sized amorphous powders of MoS by γ -irradiation method. Mater. Lett. 43, 81–86 (2000).

Z. Wu, D. Wang, and A. Sun. PreparationofMoS2 nanoflakes by a novel mechanical activation method. J. Cryst. Growth 312, 340–343 (2010).

M. Virˇsek, A. Jesih, I. Miloˇsevi´c, M. Damnjanovi´c, and M. Remˇskar. Raman scattering of the MoS2 and WS2 single nanotubes. Surf. Sci. 601, 2868–2872 (2007).

P. Cui, B. Xie, X. Li, M. Li, Y. Li, Y. Wang, Z. Liu, X. Liu, J. Huang, D. Song, J.M. Mbengue. Anatase/TiO2-B hybrid microspheres constructed from ultra-thin nanosheets: facile synthesis and application for fast lithium ion storage,Cryst Eng Comm 17 (2015) 7930–7937.

T. Stephenson, Z. Li, B. Olsen, D. Mitlin. Lithium ion battery applications ofmolybdenum disulfide (MoS2) nanocomposites, Energ. Environ. Sci. 7 (2014)209–231.

Q. Yang, Z. Lu, Z. Chang, W. Zhu, J. Sun, J. Liu, et al., Hierarchical Co3O4 nanosheet@nanowire arrays with enhanced pseudocapacitive performance, RSC Adv. 2 (2012) 1663–1668.

K. Raidongia, C.N.R. Rao, Study of the Transformations of Elemental Nanowires to Nanotubes of Metal Oxides and Chalcogenides through the Kirkendall Effect, J. Phys. Chem. C. 112 (2008) 13366–13371.

R. Cai, J. Chen, J. Zhu, C. Xu, W. Zhang, C. Zhang, et al., Synthesis of CuxS/Cu Nanotubes and Their Lithium Storage Properties, J. Phys. Chem. C. 116 (2012) 12468– 12474.

Z. Lu, H. Zhang, W. Zhu, X. Yu, Y. Kuang, Z. Chang, et al., In situ fabrication of porous MoS2 thin films as high-performance catalysts for electrochemical hydrogen evolution, Chem. Commun. 49 (2013) 7516.

K. Krishnamoorthy, K. Jeyasubramanian, M. Premanathan, G. Subbiah, H.S. Shin, S.J. Kim, Graphene oxide nanopaint, Carbon 72 (2014) 328–337.

J. Shi, Y. Yang, Y. Zhang, D. Ma, W. Wei, Q. Ji, et al., Monolayer MoS2 Growth on Au Foils and On-Site Domain Boundary Imaging, Adv. Funct. Mater. 25 (2015) 842–849.

H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, et al., From Bulk to Monolayer MoS2: Evolution of Raman Scattering, Adv. Funct. Mater. 22 (2012) 1385– 1390.

M. Otoyama, Y. Ito, A. Hayashi, M. Tatsumisago, Raman imaging for LiCoO2 composite positive electrodes in all-solid-state lithium batteries using Li2S–P2S5 solid electrolytes, J. Power Sources. 302 (2016) 419–425.

S. Kataria, A. Patsha, S. Dhara, A.K. Tyagi, H.C. Barshilia, Raman imaging on highquality graphene grown by hot-filament chemical vapor deposition, J. Raman Spectrosc. 43 (2012) 1864–1867.

K.P. Dhakal, D.L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, et al., Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2., Nanoscale. 6 (2014) 13028–35.

Y. Cheng, K. Yao, Y. Yang, L. Li, Y. Yao, Q. Wang, et al., Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition, RSC Adv. 3 (2013) 17287.

B. Chakraborty, H.S.S.R. Matte, A.K. Sood, C.N.R. Rao, Layer-dependent resonant Raman scattering of a few layer MoS2, J. Raman Spectrosc. 44 (2013) 92–96.

C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2., ACS Nano. 4 (2010) 2695–700.

Z. Pu, Q. Liu, A.M. Asiri, Y. Luo, X. Sun, Y. He, 3D macroporous MoS2 thin film: in situ hydrothermal preparation and application as a highly active hydrogen evolution electrocatalyst at all pH values, Electrochim. Acta. 168 (2015) 133–138.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, et al., Emerging photoluminescence in monolayer MoS2., Nano Lett. 10 (2010) 1271–5.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2., Nano Lett. 11 (2011) 5111–6.

Y. Yang, H. Fei, G. Ruan, C. Xiang, J.M. Tour, Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices., Adv. Mater. 26 (2014) 8163–8.

L.-B. Xing, S.-F. Hou, J. Zhou, S. Li, T. Zhu, Z. Li, et al., UV-Assisted Photoreduction of Graphene Oxide into Hydrogels: High-Rate Capacitive Performance in Supercapacitor, J. Phys. Chem. C. 118 (2014) 25924–25930.

M. Kumar, A. Subramania, K. Balakrishnan, Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors, Electrochim. Acta. 149 (2014) 152–158.

S. Kataria, A. Patsha, S. Dhara, A.K. Tyagi, H.C. Barshilia, Raman imaging on highquality graphene grown by hot-filament chemical vapor deposition, J. Raman Spectrosc. 43 (2012) 1864–1867.

J. Guo, Q. Liu, C. Wang, M.R. Zachariah. Interdispersed amorphousMnOx carbon nanocomposites with superior electrochemical performance aslithium-storage material, Adv. Funct. Mater. 22 (2012) 803–811.

J.H. Ku, J.H. Ryu, S.H. Kim, O.H. Han, S.M. Oh. Reversible lithium storage withhigh mobility at structural defects in amorphous molybdenum dioxideelectrode, Adv. Funct. Mater. 22 (2012) 3658–3664.

F. Zhou, S. Xin, H.-W. Liang, L.-T. Song, S.-H. Yu. Carbon nanofibers decoratedwith molybdenum disulfide nanosheets: synergistic lithium storage andenhanced electrochemical performance, Angew. Chem. Int. Ed. 53 (2014)11552–11556.

E. Hüger, L. Dörrer, J. Rahn, T. Panzner, J. Stahn, G. Lilienkamp, H. Schmidt. Lithium transport through nanosized amorphous silicon layers, Nano Lett. 13(2013) 1237–1244.


Refbacks

  • There are currently no refbacks.