Open Access Open Access  Restricted Access Subscription or Fee Access

FESEM and HRTEM Analysis of ACNT-MoS2 Nanohybrids

Binoy Bera, Diptonil Banerjee

Abstract


Material characterization is very important aspect of material science for characterizing the material. Specially field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM) are very useful for characterize the nano-structured material. Here amorphous carbon nanotube – MoS2 nanohybrids were characterized by using FESEM and HRTEM method. Amorphous carbon nanotube-MoS2 nanohybrids were prepared through hydrothermal method using amorphous carbon nanotube, hexaammonium heptamolybdate tetrahydrate and thiourea as main material.


Keywords


Molybdenum disulfide, Field emission scanning electron microscope, HRTEM, nanohybrids.

Full Text:

PDF

References


S. Iijima. Helical microtubules of graphitic carbon. Nature 354, 1991, 56 - 58.

G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J Amaratunga, and M. Chhowalla, 2008 Appl. Phys. Lett. 93, 233502 (2008).

Y. Liu, J. Tang, X. Chen, W. Chen,G. K.H. Pang, and J.H. Xin,“A wet-chemical route for the decoration of CNTs with silver nanoparticles,” Carbon, vol. 44, no. 2, pp. 381–383, 2006.

Z. Zanolli, R. Leghrib, A. Felten, J. Pireaux, E. Llobet, and J. Charlier, “Gas sensing with Au-decorated carbon nanotubes,”Journal of American Chemical Society, vol. 6, no. 5, pp. 4592–4599, 2011.

T. Zhaoet al. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes. Sci. Rep. 4, 5619; DOI:10.1038/srep05619 (2014).

D. J. Guo and H. L. Li, “Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution,” Carbon, vol. 43, no. 6, pp. 1259–1264, 2005.

B. Bera. Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique). Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-8, 2016.

B. Bera, Madhumita.Das Sarkar. Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept . IOSR Journal of Applied Physics (IOSR-JAP). Volume 9, Issue 3 Ver. I, PP 95-99.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Sensor Made of PVDF/graphene Electrospinning Fiber and Comparison between Electrospinning PVDF Fiber and PVDF/graphene Fiber. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-5, 2016.

Binoy Bera, Madhumita Das Sarkar. Gold Nanoparticle Doped PVDF Nanofiber Preparation of Concurrently Harvesting Light and Mechanical Energy. IOSR Journal of Applied Physics (IOSR-JAP).Volume 9, Issue 3 Ver. III (May - June 2017), PP 05-12.

Binoy Bera, Madhumita Das Sarkar. PVDF based Piezoelectric Nanogenerator as a new kind of device for generating power from renewable resources. IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE). Volume 4, Issue 2 (Mar. - Apr. 2017), PP 01-05.

Binoy Bera. Preparation of polymer nanofiber and its application. Asian journal of physical and chemical sciences. volume 2, issue 4, 1-4, 2017. article no. AJOPACS. 35651.

Binoy Bera. Literature Review on Triboelectric Nanogenerator. Imperial Journal of Interdisciplinary Research(IJIR). 2(10):1263-1271·January2016.

Binoy Bera. Preparation of MoS2 nanosheets and PVDF nanofiber. Asian journal of physical and chemical sciences. volume 2, issue 4, 1-9, 2017.article no. AJOPACS. 35176.

Binoy Bera. Nanoporous Silicon Prepared by Vapour Phase Strain Etch and Sacrificial Technique. IJCA Proceedings on International Conference on Microelectronic Circuit and System MICRO 2015(1):42-45, December 2015.

Binoy Bera, Dipankar Mandal, Madhumita Das Sarkar. Porous Silicon and its Nanoparticle as Biomaterial: A Review. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-11, 2016. (4).

Binoy Bera. A Review on Polymer, Graphene and Carbon Nanotube: Properties, Synthesis and Applications. Imperial Journal of Interdisciplinary Research (IJIR). Vol-3, Issue-10, 2017.

Hari Sarkar, Binoy Bera, Sudakshina Kundu. Sleep Mode Transistor Sizing Effect of MTCMOS Inverter Circuit on Performance in Deep Submicron Technology. Global Journal of Trends in Engineering (GJTE). Vol(2)-Issue(4), 2015.

Binoy Bera, Madhumita Das Sarkar. Piezoelectric Effect, Piezotronics and Piezophototronics: A Review. Imperial Journal of Interdisciplinary Research (IJIR). Vol-2, Issue-11, 2016.

Binoy Bera, Diptonil Banerjee. Preparation and Characterization of Amorphous Carbon Nanotube-MoS2 Nanohybrid. International Journal of Research in Engineering, Science and Management Volume-2, Issue-8, August-2019, 5-8p.

Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu, Z. Wang. A facile route to synthesis of MoS2 nanorods. Materials Letters. 2005,59, 3452–3455.

Simone Bertolazzi, Jacopo Brivio, Andras Kis (2011). Stretching and Breaking of Ultrathin MoS2. ACS Nano. 5 (12): 9703–9709. doi:10.1021/nn203879f.

T. Stephenson, Z. Li, B. Olsen, D. Mitlin (2014). Lithium Ion Battery Applications of Molybdenum Disulfide (MoS2) Nanocomposites. Energy Environ. Sci. 7: 209–31. doi:10.1039/C3EE42591F.

Peter Cannon (1959). Melting Point and Sublimation of Molybdenum Disulphide. Nature. 183 (4675): 1612–1613. doi:10.1038/1831612a0.

A. B. Laursen, S. Kegnaes, S. Dahl, I. Chorkendorff (2012). Molybdenum Sulfides – Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution. Energy Environ. Sci. 5 (2): 5577–91. doi:10.1039/c2ee02618j.

Jonathan N. Coleman, Mustafa Lotya, Arlene O’Neill, Shane D. Bergin, Paul J. King, Umar Khan, Karen Young, Alexandre Gaucher, Sukanta De (2011-02-04). Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science. 331 (6017): 568–571. doi:10.1126/science.1194975.

Qinglin Zhang, Zhanwei Xu, Hejun Li, Liyan Wu,Gaoxiang Cao & Kezhi Li. Synthesis of MoS2 Nanosheets by Solid-State Reaction in CVD Furnace. Integrated Ferroelectrics . Volume 128, 2011 - Issue 1. http://dx.doi.org/10.1080/10584587.2011.576612.

Claudia Altavilla, Maria Sarno, and Paolo Ciambelli. A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M=Mo, W). Chem. Mater. 2011, 23, 3879–3885. http://dx.doi.org/10.1021/cm200837g.

J.M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithiumbatteries, Nature 414 (2001) 359–367.

A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. van Schalkwijk. Nanostructured materials for advanced energy conversion and storagedevices, Nat. Mater. 4 (2005) 366–377.

X. Li, Y. Feng, M. Li, W. Li, H. Wei, D. Song. Smart hybrids of Zn2GeO4nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage andexcellent electrochemical performance, Adv. Funct. Mater. 25 (2015)6858–6866.

M. Armand, J.M. Tarascon. Building better batteries, Nature 451 (2008)652–657.

B. Kang, G. Ceder. Battery materials for ultrafast charging and discharging,Nature 458 (2009) 190–193.

Binoy Bera. Silicon Wafer Cleaning: A Fundamental and Critical Step in Semiconductor Fabrication Process. International Journal of Applied Nanotechnology. 2019; 5 (1): 8–13p.

Binoy Bera. Synthesis, Properties and Applications of Amorphous Carbon Nanotube and MoS2 Nanosheets: A Review. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019; 21(1): 36–52p.

Binoy Bera, Diptonil Banerjee. A Detail Opto-electronic and Photocatalytic Study of Amorphous Carbon Nanotubes—MoS2 Hybrids. Nano Trends: A Journal of Nanotechnology and Its Applications. 2019; 21(2): 19–30p.

Binoy Bera. Hydroxyapatite, Synthesis of numerous CdS quantum dot composite material: A Review. and Nanostructure. 2019; 5 (1) 1–11p.

Binoy Bera. Porous Silicon and its Nanoparticles: A Theoretical Study. International Journal of Applied Nanotechnology.2019; 5 (1): 14–18p.

Binoy Bera. Synthesis and Applications of ACNT-MoS2 Nanocomposite. A Review. and Nanostructure. 2019; 5 (1) 31–38p.

X. Li, W. Li, M. Li, P. Cui, D. Chen, T. Gengenbach, L. Chu, H. Liu, G. Song. Glucose-assisted synthesis of the hierarchical TiO2 nanowire@MoS2nanosheet nanocomposite and its synergistic lithium storage performance, J.Mater. Chem. A 3 (2015) 2762–2769.

D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J.-C. Jumas, J.-M. Tarascon. Recent findings and prospects in the field of pure metals as negativeelectrodes for Li-ion batteries, J. Mater. Chem. 17 (2007) 3759–3772.

Y. Feng, X. Li, Z. Shao, H. Wang. Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ionbatteries, J. Mater. Chem. A 3 (2015) 15274–15279.

L. Chu, M. Li, X. Li, Y. Wang, Z. Wan, S. Dou, D. Song, Y. Li, B. Jiang. Highperformance NiO microsphere anode assembled from porous nanosheets forlithium-ion batteries, RSC Adv. 5 (2015) 49765–49770.

P. Cui, B. Xie, X. Li, M. Li, Y. Li, Y. Wang, Z. Liu, X. Liu, J. Huang, D. Song, J.M.Mbengue. Anatase/TiO2-B hybrid microspheres constructed from ultrathinnanosheets: facile synthesis and application for fast lithium ion storage,CrystEngComm 17 (2015) 7930–7937.

T. Stephenson, Z. Li, B. Olsen, D. Mitlin. Lithium ion battery applications ofmolybdenum disulfide (MoS2) nanocomposites, Energ. Environ. Sci. 7 (2014)209–231.

H. Hwang, H. Kim, J. Cho. MoS2 nanoplates consisting of disorderedgraphene-like layers for high rate lithium battery anode materials, Nano Lett.11 (2011) 4826–4830.

R. Dominko, D. Arcon, A. Mrzel, A. Zorko, P. Cevc, P. Venturini, M. Gaberscek,M. Ramskar, D. Mihailovic. Dichalcogenide nanotube electrodes for Li-ionbatteries, ChemInform 34 (2003) 1531–1534.

H. Li, W. Li, L. Ma, W. Chen, J. Wang. Electrochemical lithiation/delithiationperformances of 3D flowerlike MoS2 powders prepared by ionic liquidassisted hydrothermal route, J. Alloy Compd. 471 (2009) 442–447.

Y. Kim, J.B. Goodenough. Lithium insertion into transition-metalmonosulfides: tuning the position of the metal 4s band, J. Phys. Chem. C 112(2008) 15060–15064.

X. Wang, Q. Xiang, B. Liu, L. Wang, T. Luo, D. Chen, G. Shen. TiO2 modified FeSnanostructures with enhanced electrochemical performance for lithium-ionbatteries, Sci. Rep. 3 (2013) 10454–10461.

L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfurcells, J. Am. Chem. Soc. 133 (2011) 18522–18525.

Q. Fan, P.J. Chupas, M.S. Whittingham. Characterization of amorphous andcrystalline tin–cobalt anodes, Electrochem. Solid State 10 (2007).

T. Matsuyama, A. Hayashi, T. Ozaki, S. Mori, M. Tatsumisago. Electrochemicalproperties of all-solid-state lithium batteries with amorphous MoS3electrodes prepared by mechanical milling, J. Mater. Chem. A 3 (2015)14142–14147.

E. Hüger, L. Dörrer, J. Rahn, T. Panzner, J. Stahn, G. Lilienkamp, H. Schmidt. Lithium transport through nanosized amorphous silicon layers, Nano Lett. 13(2013) 1237–1244.

X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M.N. Banis, Y. Li, J. Yang, R. Li, X. Sun,M. Cai, M.W. Verbrugge. Tin oxide with controlled morphology andcrystallinity by atomic layer deposition onto graphene nanosheets forenhanced lithium storage, Adv. Funct. Mater. 22 (2012) 1647–1654.

H. Ghassemi, M. Au, N. Chen, P.A. Heiden, R.S. Yassar. In situ electrochemicallithiation/delithiation observation of individual amorphous Si nanorods, ACSNano 5 (2011) 7805–7811.

Y. Jiang, D. Zhang, Y. Li, T. Yuan, N. Bahlawane, C. Liang, W. Sun, Y. Lu, M. Yan. Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode materialfor lithium ion batteries, Nano Energy 4 (2014) 23–30.

J. Guo, Q. Liu, C. Wang, M.R. Zachariah. Interdispersed amorphousMnOx–carbon nanocomposites with superior electrochemical performance aslithium-storage material, Adv. Funct. Mater. 22 (2012) 803–811.

J.H. Ku, J.H. Ryu, S.H. Kim, O.H. Han, S.M. Oh. Reversible lithium storage withhigh mobility at structural defects in amorphous molybdenum dioxideelectrode, Adv. Funct. Mater. 22 (2012) 3658–3664.

F. Zhou, S. Xin, H.-W. Liang, L.-T. Song, S.-H. Yu. Carbon nanofibers decoratedwith molybdenum disulfide nanosheets: synergistic lithium storage andenhanced electrochemical performance, Angew. Chem. Int. Ed. 53 (2014)11552–11556.


Refbacks

  • There are currently no refbacks.