Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis of Graphene Oxide and its Applications in Wastewater Treatment and Power Storage

Vishal V S, Sumanth T S, Vasthi Sai Praneeth, Nishant D M, Sirisha Nallakukkala, Soumen Panda

Abstract


Graphene is a layer of single atom thick carbon. It’s currently the strongest material in the world. Graphene has an extensive range of potential applications. Graphene is now being tested in many fields such as electronics, energy recovery, cosmetics, water treatment etc. This review paper stresses on different methods of synthesis of graphene oxide (GO) and means of usage of such material in wastewater treatment and energy storage. The wastewater treatment application includes Microbial fuel cell (MFC) and uses of Graphene oxide membrane. Energy storage application includes GO based batteries and GO based supercapacitors. Basic Information about MFC’s working and design, working and construction on GO based batteries and supercapacitors has been described in this review.


Keywords


Graphene, Graphene oxide, Microbial fuel cell, Batteries, Supercapacitors

Full Text:

PDF

References


Sungjin Park, Jinho An, Jeffrey R. Potts, Aruna Velamakanni, Shanthi Murali, Rodney S. Ruoff. Hydrazine-reduction of graphite- and graphene oxide, Carbon. 2011, Volume 49, Issue 9, Pages 3019–3023. https://doi.org/10.1016/j.carbon.2011.02.071.

C.S. Rao. Environmental Pollution Control Engineering. New Age Publication, New Delhi 2006.

Gajendra J Prasad, Soumen Panda. Microbial fuel cells: Types of MFC and different substrate. International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS). May 2018, Volume VII, Issue V, 158–165.

Padmajan Sasikala S, Lim J, Kim IH, Jung HJ, Yun T, Han TH et al. Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials. Chemical Society reviews 2018;47(16):6013–45.

Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chemical Society reviews 2010;39(1):228–40.

Lim JY, Mubarak NM, Abdullah EC, Nizamuddin S, Khalid M, Inamuddin. Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals: A review. Journal of Industrial and Engineering Chemistry. 2018, DOI: 10.1016/j.jiec.2018.05.028.

The Guardian. Sample, I. (2010). Nobel prize for physics goes to Manchester University scientists. [online] the Guardian. Available at: https://www.theguardian.com/science/2010/oct/05/nobel-prize-physics [Accessed Dec. 2020].

Hummers, W.S. and Offeman, R.E. (1958) Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80, 1339–1339. http://dx.doi.org/10.1021/ja01539a017.

Oxide Patrick Feicht, Johannes Biskupek, Tatiana E. Gorelik, Julian Renner, Christian E. Halbig[a] Maria Aranska, Florian Puchtler, Ute Kaiser, and Siegfried Eigler Boehm HP, Setton R, Stumpp E. Brodie’s or Hummers’ Method: Oxidation Conditions Determine the Structure of Graphene Carbon. 1986;24(2):241–5.

Williams. Hummersjr, And Richarde. Offeman Receiveds Eptembe Preparation of Graphitic Oxide BY 25R, 1957.

B.C. Brodie. On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London. 1859; 149:249–259.

Fu L, Liu Hongbo, Zou Yanhong, Li Bo. Technology research on oxidative degree of graphite oxide prepared by Hummers method (in Chinese). CARBON 2005;124(4):10–4.

Chen J, Li Y, Huang L, Li C, Shi G. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon. 2015; 81:826–34.

Amanpreet Kaur, Jasmeet Kaur, Ravi Chand Singh (2018) Tailor made exfoliated reduced graphene oxide nanosheets based on oxidative-exfoliation approach, Fullerenes, Nanotubes and Carbon Nanostructures, 26:1, 1–11, DOI:10.1080/1536383X.2017.1390454.

Long Zhang, Jiajie Liang, Yi Huang, Yanfeng Ma, Yan Wang, Yongsheng Chen Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon. 47 (2009) 3365–3380.

Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al. Improved Synthesis of Graphene Oxide. ACS Nano. 2010;4(8):4806–14.

Daniela C. Marcano Dmitry V. Kosynkin Jacob M. Berlin, Alexander Sinitskii, Zhengzong Sun, Alexander Slesarev, Lawrence B. Alemany, Wei Lu, and James M. Tour. Improved Synthesis of Graphene Oxide. ACS Nano. 2010 Aug 24;4(8):4806–14. doi: 10.1021/nn1006368.

Amanpreet Kaur, Jasmeet Kaur & Ravi Chand Singh (2018) Tailor made exfoliated reduced graphene oxide nanosheets based on oxidative-exfoliation approach, Fullerenes, Nanotubes and Carbon Nanostructures, 26:1, 1–11, DOI:10.

/1536383X.2017.1390454

Long Zhang, Jiajie Liang, Yi Huang, Yanfeng Ma, Yan Wang, Yongsheng Chen Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation

Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method Jesus Guerrero-Contreras, F. Caballero-Briones

P.A. Denis and F. Iribarne. Chem. Eur. J. 18(2012) 7568

L. Ji, W. Chen, Z. Xu, S. Zheng, and D. Zhu. J. Environ. Qual. 42 (2013) 191.

J.-G. Yu, X.-H, Q. Yang, L.-Y. Yu, J.-H. Jiang, and X.-Q. Chen. Sci. Total Environ. 482 (2014) 241.

O.G. Apul, Q. Wang, Y. Zhou, and T. Karanfil. Water Res. 47 (2013) 1648. Zhao, H. Yang, X.-H. Chen,

Y. Li, T. Liu, Q. Du, J. Sun, Y. Xia, Z. Wang, W. Zhang, K. Wang, H. Zhu, and D. Wu. Chem. Biochem. Eng. Q. 25 (2012) 483.

B. Li, H. Cao, and G. Yin. J. Mater. Chem.21 (2011) 13765.

S.-T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu, and H. Wang. J. Colloid Interface Sci. 359 (2011) 24.

N. Li, M. Zheng, X. Chang, G. Ji, H. Lu, L. Xue, L. Pan and J. Cao. J. Solid State Chem. 184 (2011) 953.

Q. Du, J. Sun, Y. Li, X. Yang, X. Wang, Z. Wang, and L. Xia. Chem. Eng. J. 245 (2014) 99.

O. Moradi, V.K. Gupta, S. Agarwal, I. Tyagi, M. Asif, A.S.H. Makhlouf, H. Sadegh and R. Shahryari-Ghoshekandi. J. Ind. Eng. Chem. 28 (2015) 294.

T. Wu, X. Cai, S. Tan, H. Li, J. Liu, and W. Yang. Chem. Eng. J. 173 (2011)

A. Mishra, D. Krishnan, U. Waghmare, S. Maliyekkal, S. Kouser, T. Pradeep and T. Sreeprasad. Small 9 273.

G. Zhao, J. Li, X. Ren, C. Chen, and X. Wang. Environ. Sci. Tech. 45 (2011) 10454. Hwang and K.S. Kim. ACS Nano. 4 (2010)

V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim. ACS Nano, 4 (2010), p. 3979.

W. Gao, M. Majumder, L.B. Alemany, T.N. Narayanan, M.A. Ibarra, B.K. Pradhan, and P.M. Ajayan. ACS Appl. Mater. Interfaces. 3, 2011.

Metcalf & Eddy Inc, G Tchobanoglous, F.L. Burton, H.D. Stensel, Wastewater engineering treatment and reuse, McGraw-Hill Companies Inc, New York, 2003.

I. Chowdhury, N.D. Mansukhani, L.M. Guiney, M.C. Hersam, D. Bouchard, Aggregation, and stability of reduced graphene oxide: complex roles of divalent cations, pH, and natural organic matter, Environ. Sci. Technol. 49 (2015)

X. Ren, J. Li, X. Tan, W. Shi, C. Chen, D. Shao, T. Wen, L. Wang, G. Zhao, G. Sheng, X. Wang, Impact of Al2O3 on the aggregation and deposition of graphene oxide, Environ. Sci. Technol. 48 (2014) 5493–5500.

T. Jiao, H. Zhao, J. Zhou, Q. Zhang, X. Luo, J. Hu, Q. Peng, X. Yan, Self-assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments, ACS Sustainable Chem. Eng. 3 (2015) 3130–3139.

T. Jiao, Y. Liu, Y. Wu, Q. Zhang, X. Yan, F. Gao, A.J.P. Bauer, J. Liu, T. Zeng, B. Li, Facile and scalable preparation of graphene oxide-based magnetic hybrids for fast and highly efficient removal of organic dyes, Sci. Rep. 5 (2015) 12451.

Z. Hua, J. Zhang, X. Bai, Z. Ye, Z. Tang, L. Liang, Y. Liu, Aggregation of TiO2–graphene nanocomposites in aqueous environment: Influence of environmental factors and UV irradiation, Sci. Total Environ. 539 (2016) 196.

H.M. Hegab, A. El Mekawy, L. Zou, D. Mulcahy, C.P. Saint, M. Ginic-Markovic, The controversial antibacterial activity of graphene-based materials, Carbon 105 (2016) 362–376.

F. Ahmed, D.F. Rodrigues, Investigation of acute effects of graphene oxide on wastewater microbial community: a case study, J. Hazard. Mater. 256–257 (2013) 33–39.

R.G. Combarros, S. Collado, M. Díaz, Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida, J. Hazard. Mater. 310 (2016) 246–252.

S. Lackner, E.M. Gilbert, S.E. Vlaeminck, A. Joss, H. Horn, M.C.M. van Loosdrecht, Full-scale partial nitritation/anammox experiences–an application survey, Water Res. 55 (2014) 292–303.

H. Gao, Y.D. Scherson, G.F. Wells, Towards energy neutral wastewater treatment: methodology and state of the art, Environ. Sci. Proc. Imp. 16 (2014) 1223–1246.

D. Wang, G. Wang, G. Zhang, X. Xu, F. Yang, F Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal, Bioresour. Technol. 131 (2013) 527–530.

X. Yin, S. Qiao, C. Yu, T. Tian, J. Zhou, Effects of reduced graphene oxide on the activities of anammox biomass and key enzymes, Chem. Eng. J. 276 (2015) 106–112.

S. Chowdhury, R. Balasubramanian, Recent advances in the use of graphene family nanoadsorbents for removal of toxic pollutants from wastewater, Adv. Colloid Interface Sci. 204 (2014) 35–56.

Y. Zhou, O. G. Apul, T. Karanfil, Adsorption of halogenated aliphatic contaminants by graphene nanomaterials, Water Res. 79 (2015) 57–67.

J. Zhao, Z. Wang, J.C. White, B. Xing, Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation, Environ. Sci. Technol. 48 (2014) 9995–10009.

Y. Li, F. Yu, W. He, W. Yang, The preparation and catalytic performance of graphene-reinforced ion-exchange resins RSC Advances 5 (2015) 2550–2561.

A. Aghigh, V. Alizadeh, H.Y. Wong, M. Shabiul Islam, N. Amin, M. Zaman, Recent advances in utilization of graphene for filtration and desalination of water: a review, Desalination. 365 (2015) 389–397.

K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Environmental applications using graphene composites: water remediation and gas adsorption, Nanoscale 5 (2013) 3149–3171.

S.C. Smith, D.F. Rodrigues, Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications, Carbon 91 (2015) 122–143.

W. Xing, G. Lalwani, I. Rusakova, B. Sitharaman, Degradation of graphene by hydrogen peroxide, Part. Part. Syst. Char. 31 (2014) 745–750.

T. Du, Y. Wang, X. Yang, W. Wang, H. Guo, X. Xiong, R. Gao, X. Wuli, A.S. Adeleye, Y. Li, Mechanisms and kinetics study on the trihalomethanes formation with carbon nanoparticle precursors, Chemosphere 154 (2016) 391–397.

W. Gao, G. Wu, M.T. Janicke, D.A. Cullen, R. Mukundan, J.K. Baldwin, E.L. Brosha, C. Galande, P.M. Ajayan, K.L. More, A.M. Dattelbaum, P. Zelenay, Ozonated graphene oxide film as a proton-exchange membrane, Angewandte Commun. 53 (2014) 3588–3593.

W.A.M. Hijnen, E.F. Beerendonk, G.J. Medema, Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review, Water Res. 40 (2016) 3–22.

Z. Xiong, L.L. Zhang, J. Ma, X.S. Zhao, Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation, Chem. Commun. 46 (2010) 6099–6101.

C.-C. Fu, R.-S. Juang, M.M. Huq, C.-T. Hsieh, Enhanced adsorption and photodegradation of phenol in aqueous suspensions of titania/graphene oxide composite catalysts, J. Taiwan Inst. Chem. Eng. 67 (2016) 338–345.

Mohan, Y.; Kumar, S.M.M.; and Das, D. (2007). Electricity generation using microbial fuel cells. International Journal of Hydrogen Energy. 33(1), 423–426.

X. An, J.C. Yu, Graphene-based photocatalytic composites, RSC Advances. 1 (2011) 1426–1434.

L. Han, P. Wang, S. Dong, Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale. 4 (2012)

Potter M.C., Electrical effects accompanying the decomposition of organic compounds, Proc. R. Soc. Lond. B. Biol. Sci. Vol. 84, 1911, 260–276.

Yue P. L. and K. Lowther, Enzymatic Oxidation of C1 Compounds in a Biochemical Fuel Cell, Chem. Eng. J., Vol. 33, 1986, B69-B77.

Chen, T., S.C. Barton, G. Binyamin, Z Gao, Y. Zhang, H.-H. Kim & A. Heller, A Miniature Biofuel Cell, J. Am. Chem. Soc. Vol. 123, No. 35, 2001, 8630–8631.

Habermann, W., E.H. Pommer, Biological Fuel Cells with Sulphide Storage Capacity, Appl. Microbiol. Biotechnol. Vol. 35, 1991, 128–133.

Allen, R.M. and Bennetto, H.P., Microbial Fuel Cells—Electricity Production from Carbohydrates. Appl. Biochem. Biotechnol., Vol. 39/40, 1993, 27–40.

Rabaey, K., W. Verstraete, Microbial Fuel Cells: Novel Biotechnology for Energy Generations. Trends Biotechnol. Vol. 23, 2005, 291–298.

Katz Eugenii, Andrew N. Shipway and Itamar Willner, Biochemical fuel cells, in Handbook of Fuel Cells–Fundamentals, Technology and Applications, Volume 1, Fundamentals and Survey of Systems, Vielstich Wolf, Hubert A. Gasteiger and Arnold Lamm; (Ed.), John Wiley & Sons, Ltd., 2003.

Bennetto, H.P., Electricity Generation by Micro-organisms, Biotechnology Education, Vol. 1, No.4, 1990

H. Liu, S. Cheng, and B.E. Logan. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental science & technology, 2005. 39(14): pp. 5488–5493.

Y. Wei, R.T. Van Houten, A. R. Borger, D. H. Eikelboom, and Y. Fan. Minimization of excess sludge production for biological wastewater treatment. Water Res. vol. 37, no. 18, pp. 4453–4467, 2003.

Z. Du, H. Li, and T. Gu. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv., vol. 25, no. 5, pp. 464–482, 2007.

B. Min, J. Kim, S. Oh, J. M. Regan, and B.E. Logan. Electricity generation from swine wastewater using microbial fuel cells. Water Res. vol. 39, no. 20, pp. 4961–4968, 2005.

A. Tardast, G. Najafpour, M. Rahimnejad, A. A. Ghoreyshi, H. Zare and K. Pirzadeh. Bioelectricity production by air cathode microbial fuel cell. 2012 Second Iranian Conference on Renewable Energy and Distributed Generation, Tehran, 2012, pp. 162–166, doi: 10.1109/ICREDG.2012.6190455.

H. Liu, S. Cheng, and B.E. Logan. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology. 2005. 39(14): pp. 5488–5493.

P. Liang, M. Fan, X. Cao, X. Huang, and C. Wang. Composition and measurement of the apparent internal resistance in microbial fuel cell. Huan Jing Ke Xue= Huanjing kexue/[bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui” Huan jing ke xue” bian ji wei yuan hui.], 2007. 28(8): pp. 1894

Rao JR, Richter GJ, Vonsturm F, Weidlich E (1976) Performance of glucose electrodes and characteristics of different biofuel cell constructions. Bioelectrochem. Bioenerg. 3: 139–150.

Park DH, Zeikus JG. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 2003;81:348–55.

E. Logan, C. Murano, K. Scott, N.D. Gray, and I.M. Head. Electricity generation from cysteine in a microbial fuel cell. Water Res., vol. 39, no. 5, pp. 942–952, 2005.

Feng, W. He, J. Liu, X. Wang, Y. Qu, and N. Ren. A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour. Technol. vol. 156, pp. 132–138, 2014.

Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J and Phung NT (2004). Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Applied Microbiology and Biotechnology 63 672–681.

Oh SE, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 2004;38:4900–44.

Pham TH, Jang JK, Chang IS, Kim BH. Improvement of cathode reaction of a mediator less microbial fuel cell. J Microbiol Biotechnol. 2004;14:324–9.

Chang IS, Kim BH, Kim M, Jang JY, Park HS, et al. Operational parameters affecting the performance of a mediator less microbial fuel cell. Biosens Bioelectron. 2003;18:32

G.C. Premier, J.R. Kim, J. Massanet-Nicolau, G. Kyazze, S. R. R. Esteves, B.K.V. enumathsa, J. Rodr´ıguez, J. Maddy, R. M. Dinsdale and A.J. Guwy, Renewable Energy. 2013, 49, 188–192.

Na Lia, Zongping Chena, Wencai Rena, Feng Lia, Hui-Ming Chenga. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci USA. 2012 Oct 23;109(43):17360–5. doi: 10.1073/pnas.1210072109.

Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature. 458(7235):190–193.

Zhang HG, Yu XD, Braun PV (2011) Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nat Nanotechnol. 6(5):277–281.

Pushparaj VL, et al. (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci USA. 104(34):13574–13577.

Amatucci GG, Badway F, Du Pasquier A, Zheng T (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc. 148:A930–A939.

Liu B, et al. (2012). Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12(6):3005–3011.

Jia XL, et al. (2011) Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chem Commun. 47(34):9669–9671.

Hu LB, Wu H, La Mantia F, Yang Y, Cui Y (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano. 4(10):5843–5848.

Gwon H, et al. (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4:1277–1283.

Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5(7):567–573.

Large reversible Li storage of Graphene Nanosheet families for use in rechargeable lithium ion batteries Eun Joo Yooa, Jedeok Kimb, Eiji Hosonoa, Hao-shen Zhou, Tetsuichi Kudo and Itaru Honmaa

Conway, B.E. (1999). Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications. New York, Kluwer-Plenum.

Chu, A., and P. Braatz (2002). Comparison of commercial supercapacitors and high power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. Journal of Power Sources. 112(1): 236–246.

Frackowiak, E. and F. Beguin (2001). Carbon materials for the electrochemical storage.

Kim, I.H., J.H. Kim, et al. (2005). Electrochemical characterization of electrochemically prepared ruthenium oxide/carbon nanotube electrode for supercapacitor application. Electrochemical and Solid State Letters. 8(7): A369-A372.

S. Mohapatra, A. Acharya and G. S. Roy, Lat. Am. J. Phys. Educ. 6 (2012) 380.

S.M. Chen, R. Ramachandran, V. Mani, and R. Saraswathi, Int. J. Electrochem. Sci., 9 (2014) 4072.

Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L.C. Qin, Phys. Chem. Chem. Phys. 13 (2011)

C. Du and N. Pan, Nanotech. Law & Business. 4 (2007)569.

A.G. Pandolfo and A.F. Hollenkamp, J. Power Sources, 157 (2006) 11.


Refbacks

  • There are currently no refbacks.