Open Access Open Access  Restricted Access Subscription or Fee Access

Blue Shift of Sol-gel Synthesized ZnO Nano-particles: Size Dependent Quantum Confinement Effect

Rajesh Das

Abstract


Zinc oxide nano-crystals with different size and shape were synthesized by sol-gel technique at 90°C. ZnO nano-particles show (100), (002), (101), (102), (110), and (103) crystalline orientation and strong band-edge emission at 408 nm. Grain size of ZnO nano-crystals varies from 4 nm to 20 nm due to variation of molar ratio of polyethylene glycol with zinc acetate during synthesis. ZnO nano-materials with grain size 4 nm and 8 nm show strong optical absorption as well as absorption peak shift of towards shorter wavelength side, which are good evidences for quantum confinement effect. Strong quantum confinement is necessary for the nano-laser devices. Keywords: Zinc oxide nano-particles, blue shift, quantum confinement effect, polyethylene glycol, sol-gel

Full Text:

PDF

References


Huang M.H., Wu Y., Feick H., et al. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater.(Weinheim, Ger.). 2001; 13(2): 113–6p.

Kong X.Y., and Wang Z.L. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts. Nano Lett. 2003; 3(12): 1625–33p.

Ramamoorthy K., Sanjeeviraja C., et al., Preparation and characterization of ZnO thin films on InP by laser-molecular beam epitaxy technique for solar cells. Journal of Crystal Growth. 2001; 226 (3): 281–6p.

Löffler J., Groenen R., Linden J.L., et al. Amorphous silicon solar cells on natively textured ZnO grown by PECVD. Thin Solid Films. 2001; 392(2): 315–9p.

Chopar K.L., Das S.R. Thin Film Cells, Plenum, New York. 1983.

Hara K., Horiguchi T., Kinoshita T., et al. Hybrid Polymer Solar Cells: Self-Assembled Monolayer Assisted Fabrication of ZnO Nanostructures, Surface Modification and Device Fabrication. Solar Energy Materials and Solar Cells, 2000; 64 (2): 115–9p.

Weissenrieder K. S., and Muller J. Thin Solid Films. 1997.

Muller J., Fresenius S.W.J. Anal.Chem. 1994.

Cao H., Zhao Y. G., Ho S. T., et al. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett. 1999; 82(1): 2278p.

Cao H., Zhao Y.G., Liu X., Seelig E.W. et al. Effect of External Feedback on Lasing in Random Media. Appl. Phys. Lett. 1999; 75: 1213p.

Huang M., Mao S., Feick H., et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001; 292: 1897p.

Xiagang Peng, Liberato Manna, Weldong Yang, et al. Shape Control of CdSe Nanocrystals. Nature. 2000; 404: 59–61p.

Lin Guo, Shihe Yang, Chunlei Yang, et al. Synthesis and Characterization of Poly (vinylpyrrolidone) - Modified Zinc Oxide Nanoparticles. Chem. Mater. 2000; 12: 2268–74p.

Zou Bingsuo, Wang Z L, Volkov V. Optical Properties of Amorphous ZnO, CdO and PdO Nanoclusters in Solution. Chem. Mater. 1999; 11(2): 3037–43p.

Sarkar S., Patra S., Bera S.K., et al. Water repellent ZnO nanowire arrays synthesized by simple solvothermal technique. Materials Letters. 2010; 64(3): 460–2p.

Pesika N.S., Stebe K.J., Searson P. C. Determination of the Particle Size Distribution of Quantum Nanocrystals from Absorbance Spectra. Adv. Matter.2003; 15(15): 1289–91p.

Louis Brus. Electronic Wave functions in Semiconductor Clusters. J. Phys. Chem. 1986; 90(12): 2555–60p.

Tan, ST. Chen, B.J.; Sun, X.W., et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005; 98: 013505p.

Kumar S., Chatterjee S., Chattopadhyay K.K., et al. Sol–Gel-Derived ZnO:Mn Nanocrystals: Study of Structural, Raman, and Optical Properties,” J. Phys. Chem. C. 2012; 116 (31): 16700–08p.

Brus L E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys.1984; 80(9): 4403p.

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J. Phys. Chem. B. 2000; 104(8): 1715–23p.

Addy van Dijken, Eric A Meulenkamp et al. J. Phys. Chem. B, 2000, 104: 4355–60p.

Monticone S, Tufeu R, Kanaev A V. Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles. J. Phys. Chem. B. 1998; 102(16): 2854–62p.

Detlef W, Bahnemann, Claudius Kormann. Preparation and Characterization of Quantum-Size Zinc Oxide - A Detailed Spectroscopic Study. J. Phys. Chem. 1987; 91(14): 3789–98p.

Uwe Koch, Anton Fojtik, Horst Weller, Arnim Henglein. Photochemistry of semiconductor colloids - Preparation of extremely small zinc oxide particles, fluorescence phenomena and size quantization effects. Chemical Physics Letters. 1985; 122(5), 507p.

Addy van Dijken, Eric A. Meulenkamp, Daniël Vanmaekelbergh, et al. Influence of Adsorbed Oxygen on the Emission Properties of Nanocrystalline ZnO Particles. J. Phys. Chem. B. 2000; 104 (18), 4355–60p.

Vanheusden K., Waren W.L., Seager C.H., et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl.Phys. 1996; 79: 7983p.

Ebothe J.,.Kityk I.V, Benet S., et al. Photoinduced effects in ZnO films deposited on MgO substrates. Optics Communications. 2006; 268(2): 269–272p.

Vanheusden K., Warren W.L., Seager C.H., et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996; 79: 7983p.

Irimpan L., Nampoori V.P.N, Radhakrishnan P., et al. Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J. Appl. Phys., 2007; 102: 063524p.

Schroer P., Kriiger P. and Pollmann J. First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS. Phys. Rev. B. 1993; 47: 6971p.


Refbacks

  • There are currently no refbacks.