Open Access Open Access  Restricted Access Subscription or Fee Access

Nanostructured Carbon Aloe vera based DSSC Solar Cell Using Screen Printing Technology

Smeetraj Gohel

Abstract


Today every nation faces vitality emergencies; so, to conquer it, various arrangements are given to advance towards sun-based energy harvesting which is rich and allowed to utilize. The presented study aims to give a simple synthesis technique for mass production of DSSC from working principles to the first commercial use. DSSC converts solar energy into electricity with help of energy harvesting materials like natural dye which makes it more sustainable with low production cost. In present study, the DSSCs utilizing characteristic color separated from the Aloe vera and organic carbon dots as a sensitizer of the photo-anode titanium dioxide and achieved an efficiency of approximately 10% in sunlight. Surface structure morphology is investigated by Scanning microscopy (SEM), and crystallography was characterized by X-ray diffraction.


Keywords


Photo-electrochemical, characterization, carbon dots, TiO2 nanoparticles, Aloe vera dye

Full Text:

PDF

References


M. Press, E.J. Arnould, Constraints on Sustainable Energy Consumption:

Market System and Public Policy Challenges and Opportunities, J. Public

Policy Mark. 28 (2009) 102–113. https://doi.org/10.1509/jppm.28.1.102.

S.R. Marks, Multiple Roles and Role Strain: Some Notes on Human Energy,

Time and Commitment, Am. Sociol. Rev. 42 (1977) 921.

https://doi.org/10.2307/2094577.

N.S. Lewis, Toward Cost-Effective Solar Energy Use, Science (80-. ). 315

(2007) 798–801. https://doi.org/10.1126/science.1137014.

N. Vlachopoulos, P. Liska, J. Augustynski, M. Graetzel, Very efficient

visible light energy harvesting and conversion by spectral sensitization of

high surface area polycrystalline titanium dioxide films, J. Am. Chem. Soc.

(1988) 1216–1220. https://doi.org/10.1021/ja00212a033.

N. Vlachopoulos, P. Liska, A.J. McEvoy, M. Grätzel, Efficient spectral

sensitisation of polycrystalline titanium dioxide photoelectrodes, Surf. Sci.

–190 (1987) 823–831. https://doi.org/10.1016/S0039-6028(87)80518-6.

B.E. Hardin, H.J. Snaith, M.D. McGehee, The renaissance of dye-sensitized

solar cells, Nat. Photonics. 6 (2012) 162–169.

https://doi.org/10.1038/nphoton.2012.22.

M.A. Moradiya, A. Dangodara, J. Pala, C.R. Savaliya, D. Dhruv, V.R.

Rathod, A.D. Joshi, N.A. Shah, D. Pandya, J.H. Markna, A natural tomato

slurry as a photosensitizer for dye-sensitized solar cells with TiO 2 /CuO

composite thin films, Sep. Sci. Technol. 54 (2019) 207–212.

https://doi.org/10.1080/01496395.2018.1444053.

D. Wei, Dye Sensitized Solar Cells, Int. J. Mol. Sci. 11 (2010) 1103–1113.

https://doi.org/10.3390/ijms11031103.

K. Tennakone, K.P. Hewaparakkrama, M. Dewasurendra, A.H. Jayatissa,

L.K. Weerasena, Dye-sensitised solid-state photovoltaic cells, Semicond. Sci.

Technol. 3 (1988) 382–387. https://doi.org/10.1088/0268-1242/3/4/017.

P.A. Venz, J.T. Kloprogge, R.L. Frost, Chemically Modified Titania

Hydrolysates: Physical Properties, Langmuir. 16 (2000) 4962–4968.

https://doi.org/10.1021/la990830u.

G.J. Wilson, G.D. Will, R.L. Frost, S.A. Montgomery, Efficient microwave

hydrothermal preparation of nanocrystalline anatase TiO2 colloids, J. Mater.

Chem. 12 (2002) 1787–1791. https://doi.org/10.1039/b200053a.

Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-

Sensitized Solar Cells with Conversion Efficiency of 11.1%, Jpn. J. Appl.

Phys. 45 (2006) L638–L640. https://doi.org/10.1143/JJAP.45.L638.

S. Ito, N.-L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin,

P. Péchy, M.K. Nazeeruddin, M. Grätzel, High-efficiency (7.2%) flexible

dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2

photoanode, Chem. Commun. (2006) 4004–4006.

https://doi.org/10.1039/B608279C.

P.R.F. Barnes, A.Y. Anderson, S.E. Koops, J.R. Durrant, B.C. O’Regan,

Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar

Cells Derived from Incident Photon Conversion Efficiency Measurements, J.

Phys. Chem. C. 113 (2009) 1126–1136. https://doi.org/10.1021/jp809046j.

G. Boschloo, A. Hagfeldt, Characteristics of the Iodide/Triiodide Redox

Mediator in Dye-Sensitized Solar Cells, Acc. Chem. Res. 42 (2009)

–1826. https://doi.org/10.1021/ar900138m.

M. Wang, N. Chamberland, L. Breau, J.-E. Moser, R. Humphry-Baker, B.

Marsan, S.M. Zakeeruddin, M. Grätzel, An organic redox electrolyte to rival

triiodide/iodide in dye-sensitized solar cells, Nat. Chem. 2 (2010) 385–389.

https://doi.org/10.1038/nchem.610.

M. Grätzel, Photoelectrochemical cells, Nature. 414 (2001) 338–344.

https://doi.org/10.1038/35104607.

W.M. Campbell, A.K. Burrell, D.L. Officer, K.W. Jolley, Porphyrins as light

harvesters in the dye-sensitised TiO2 solar cell, Coord. Chem. Rev. 248

(2004) 1363–1379. https://doi.org/10.1016/j.ccr.2004.01.007.

O. Enea, J. Moser, M. Grätzel, Achievement of incident photon to electric

current conversion yields exceeding 80% in the spectral sensitization of

titanium dioxide by coumarin, J. Electroanal. Chem. Interfacial Electrochem.

(1989) 59–65. https://doi.org/10.1016/0022-0728(89)80038-5.

G. SMESTAD, C. BIGNOZZI, R. ARGAZZI, Testing of dye sensitized

TiO2 solar cells I: Experimental photocurrent output and conversion

efficiencies, Sol. Energy Mater. Sol. Cells. 32 (1994) 259–272.

https://doi.org/10.1016/0927-0248(94)90263-1.


Refbacks

  • There are currently no refbacks.