Open Access Open Access  Restricted Access Subscription or Fee Access

Action Potential Monitoring Using Neuronanorobots: NeuroelectricNanosensors

Nuno R B Martins, Wolfram Erlhagen, Robert A. Freitas Jr

Abstract


Neuronanorobotics, a key future medical technology that can enable the preservation of human brain information, requires appropriate nanosensors. Action potentials encode the most resource-intensive functional brain data. This paper presents a theoretical design for electrical nanosensors intended for use in neuronanorobots to provide non-destructive, in vivo, continuous, real-time, single-spike monitoring of action potentials initiated and processed within the ~86 x 109 neurons of the human brain as intermediated through the ~2.4×1014 human brain synapses. The proposed ~3375 nm3 FET-based neuroelectricnanosensors could detect action potentials with a temporal resolution of at least 0.1 ms, enough for waveform characterisation even at the highest human neuron firing rates of 800 Hz.

Full Text:

PDF

References


Martins, N.R.B., Erlhagen, W., Freitas, R.A. Jr. Non-destructive whole-brain monitoring using nanorobots: Neural electrical data rate requirements. Intl. J. Machine Consciousness. 2012; 109–140p.

Wilson, H. R. (1999) Simplified Dynamics of Human and Mammalian Neocortical Neurons. Journal of Theoretical Biology. Volume 200, Issue 4, Pages 375–388p.

Connors, B.W., Gutnick, M.J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neuroscience. 13(3), 99–104p.

Freitas, R.A. Jr. (1998) Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell. Artif. Cells, Blood Subst., and Immobil. Biotech. 26:411–430p.

Freitas, R.A. Jr. (1999) Nanomedicine, Volume I: Basic Capabilities. Landes Bioscience, Georgetown, TX.

Freitas, R.A. Jr. (2000a) Clottocytes: artificial mechanical platelets. Institute for Molecular Manufacturing, Report No. 18, June 2000.

Freitas, R.A. Jr. (2000b) Nanodentistry. J. Amer. Dent. Assoc. 131(Nov):1559–1566.

Freitas, R.A. Jr. (2003) Nanomedicine, Volume IIA: Biocompatibility. Landes Bioscience, Georgetown, TX.

Morris, K. (2001) Macrodoctor, come meet the nanodoctors. Lancet 357(2001):778.

Astier, Y., et al. (2005). Protein components for nanodevices. Current Opinion in Chemical Biology 9(6), 576–584.

Patel, G. M., et al. (2006) Nanorobot: A versatile tool in nanomedicine. Journal of Drug Targeting 14(2), 63–67.

Park, H. H., et al. (2007) Rise of the nanomachine: The evolution of a revolution in medicine. Nanomedicine 2(4), 425–439.

Popov, A. M., et al. (2007) Biocompatibility and applications of carbon nanotubes in medical nanorobots. International Journal of Nanomedicine 2(3), 361–372.

Martel, S., et al. (2009) Flagellatedmagnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. International Journal of Robotics Research 28(4), 571–582.

Martel, S., et al. (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. International Journal of Robotics Research 28(4), 571–582.

Mavroides, D., Ferreira, A. (eds.) (2011) NanoRobotics: Current Approaches and Techniques (Springer, New York, 2011).

Sporns O., et al. (2005) The Human Connectome: A Structural Description of the Human Brain, PLoSComputBiol 1(4).

Lu, J. Q., (2009) 3-D hyperintegration and packaging technologies for micro-nano systems. Proc. IEEE, vol. 97, no. 1, pp. 18–30, Jan. 2009.

Anderson, J. M., et al. (2009). Physiology and Function of the Tight Junction. Cold Spring Harbor Perspectives in Biology, 1(2), a002584.

Kleinfeld, D., et al. (2011) Large-scale automated histology in the pursuit of connectomes. Journal of Neuroscience 31(45), 16,125–16,138.

Seung, H. S. (2011) Neuroscience: Towards functional connectomics. Nature 471, 170-172.

Seo, D., et al. (2013) Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain-Machine Interfaces. arXiv, 2013, arxiv.org/abs/1307.2196.

Freitas, R.A. Jr. (2010) Chapter 23. Comprehensive Nanorobotic Control of Human Morbidity and Aging. inFahy, G.M., et al., (2010) The Future of Aging: Pathways to Human Life Extension, Springer, New York, pp. 685–805.

Freitas, R.A. Jr. (2013) Chapter 6. DiamondoidNanorobotics, inMavroidis, C., Ferreira, A., eds., (2013) NanoRobotics: Current Approaches and Techniques, Springer, New York.

Freitas, R.A. Jr., Merkle, R.C. (2004) Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX.

Hogg, T., Sretavan, D.W. (2005). Controlling tiny multi-scale robots for nerve repair. In Proc. of the 20th Natl. Conf. on Artificial Intelligence (AAAI2005), pages 1286–1291. AAAI Press, 2005.

Hogg, T., (2007) Coordinating Microscopic Robots in Viscous Fluids. Auton Agents Multi-Agent Syst 2007; 14: 271–305.

Freitas, R.A. Jr. (2009) Chapter 15. Computational Tasks in Medical Nanorobotics, in Eshaghian-Wilner MM, ed., Bio-inspired and Nano-scale Integrated Computing. John Wiley & Sons, NY, pp. 391–428.

Freitas, R.A. Jr., Merkle, R.C. (2006). Nanofactory Collaboration, 14 June 2006.

Kandel, E.R., et al. (2000) Principles of Neural Science (Fourth Edition). New York, McGraw Hill. 2000.

Johnson, G.A., et al. (2010) Waxholm Space: An image-based reference for coordinating mouse brain research. NeuroImage, 2010; 53 (2): 365 DOI: 10.1016/j.neuroimage.2010.06.067.

Fiala, J.C., Harris, K.M. (2001) Extending unbiased stereology of brain ultrastructure to three-dimensional volumes. J Am Med Inform Assoc. 2001 Jan-Feb;8(1):1-16.

Wolters Kluwer Health: Lippincott Williams & Wilkins (2012, August 20). High-definition fiber tractography is major advance in brain imaging. ScienceDaily. Retrieved July 4, 2013, from http://www.sciencedaily.com /releases/2012/08/120820121050.htm.

Fernandez-Miranda, J.C., et al. (2012) High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery. 2012 Aug;71(2):430-53. doi: 10.1227/NEU.0b013e3182592faa.

General Electric (2013) Phoenix Nanoatom S. Website: http://www.geomics.Com/en/radiography-x-ray/ct-computed-tomography /nanotom-s.html

Tkachuk, A, et al. (2007) X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotation anode X-ray source. ZeitschriftfürKristallographie, vol. 222, issue 11, pp. 650–655.

Biswal, B.B., et al. (2010) Toward discovery science of human brain function. Proceedings of the National Academy of Sciences 107:10 4734–4740 (2010).

Nishimoto, S., et al. (2011) Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies. Current Biology, 21, 1641–1646.

Hayworth, K.J., et al. (2006) Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microscopy and Microanalysis 12 (Suppl 2):86-87.

Hayworth, K.J. Electronimaging technology for whole brain neural circuit mapping; International Journal of Machine Consciousness 2012; Vol. 4(01):87–108.

Helmstaedter, M., et al. (2011) High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci 14:1081–1088.

Livet, J., et al. (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450 (7166): 56–62.

Lichtman, J., et al. (June 2008) A technicolour approach to the connectome. Nature Reviews Neuroscience 9 (6): 417–422.

Zador, A.M., et al. (2012) Sequencing the Connectome. PLoSBiol 10(10): e1001411.

Withers, P.J., (2007) X-ray nanotomography, Materials today, Volume 10, Issue 12, December 2007, Pages 26–34.

Helmholtz Association (2010) New microscope reveals ultrastructure of cells. Public Release: 19 Nov 2010;http://www.eurekalert.org/pub_releases/2010-11/haog-nmr111910.php

Bock, D.D., et al. (2011). Network anatomy and in vivo physiology of visual cortical neurons. Nature. 2011;471:177–182.

Allen Brain Atlas - Website: ©2014 Allen Institute for Brain Science. Allen Human Brain Atlas [Internet]. Available from: http://human.brain-map.org/.

Allen Mouse Atlas - Website: ©2013 Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas [Internet]. Available from: http://developingmouse.brain-map.org.

Chung, K., Deisseroth, K. (2013) CLARITY for mapping the nervous system. Nature Methods 10(6), 508-513. June 2013.

Chung, K., et al. (2013) Structural and molecular interrogation of intact biological systems; Nature 497, 332–337. May 2013.

White, J.G., et al. (1986) The structure of the nervous system of the nematode Caenorhabditiselegans. Phil Trans R SocLond B 314: 1–340.

Cheng, D., et al. (2006) Relative and Absolute Quantification of Postsynaptic Density Proteome Isolated from Rat Forebrain and Cerebellum. Molecular & Cellular Proteomics 5:1158–1170, 2006.

Varshney, L.R., et al. (2011) Structural Properties of the Caenorhabditiselegans Neuronal Network, PLoSComput Biol. 2011 February; 7(2).

Bumbarger, D.J., et al. (2013). System-wide Rewiring Underlies Behavioral Differences in Predatory and Bacterial-Feeding Nematodes. Cell, Volume 152, Issue 1, 109–119, 17 January 2013.

Liu, X., et al. (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381–385.

Kaynig, V., et al. (2013) Large-Scale Automatic Reconstruction of Neuronal Processes from Electron Microscopy. Medical image analysis, 03/2013; 16(1).

Amunts, K., et al. (2013). BigBrain: An Ultrahigh-Resolution 3D Human Brain Model. Science 21 June 2013: Vol. 340 no. 6139 pp. 1472–1475.

OCP - Open Connectome Project (2014) Website: http://www.openconnectomeproject.org

IBM (2008) IBM Seeks to Build the Computer of the Future Based on Insights from the Brain. IBM News Room, 20 Nov 2008. Website: https://www-03.ibm.com/press/us/en/pressrelease/26123.wss

Black, J.E., et al. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Nati. Acad. Sci. USA, Vol. 87, pp. 5568-5572, July 1990.

Bliss, T.V., et al. (1993) CollingridgeA synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (07 January 1993).

Liu, S., Guo, X. (2012) Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Materials. NPG Asia Materials (2012) 4, e23.

Fuhrmann, G., et al. (2002) Coding of Temporal Information by Activity-Dependent Synapses The Journal of Neurophysiology Vol. 87 No. 1 January 2002, pp. 140–148.

Rollenhagen, A., Lübke, J.H.R. (2006) The morphology of excitatory central synapses: from structure to function, Cell Tissue Res (2006) 326:221–237.

Rollenhagen, A., et al. (2007) Structural determinants of transmission at large hippocampal mossy fiber synapses. J. Neurosci. 2007 Sep 26;27(39):10434–44.

Naundorf, B., et al. (2006) Unique features of action potential initiation in cortical neurons. Nature 440: 1060–1063.

Sabatini, B.L., Regehr, W.G. (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384:170–72. 1996.

Sanford L., (1968) The axon hillock and the initial segment; The Journal of Cell Biology, Vol 38, 193–201, 1968.

Polavieja, G. G., et al. (2005) Stimulus History Reliably Shapes Action Potential Waveforms of Cortical Neurons; J Neurosci. 2005 Jun 8;25(23):5657–65.

Kole, M.H., et al. (2007) Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy; Neuron. 2007 Aug 16;55(4):633–47.

Kole, M.H., et al. (2008) Action potential generation requires a high sodium channel density in the axon initial segment, Nat Neurosci 11 (2008), pp. 178–186.

Palmer, L.M., Stuart, G.J. (2006) Site of Action Potential Initiation in Layer 5 Pyramidal Neurons. The Journal of Neuroscience, February 8, 2006, 26(6):1854–1863.

Colbert, C.M., et al. (1996) Axonal Action-Potential Initiation and Na+ Channel Densities in the Soma and Axon Initial Segment of Subicular Pyramidal Neurons. J Neurosci. 1996 Nov 1;16(21):6676–86.

Tateno, T., et al. (2004) Threshold Firing Frequency–Current Relationships of Neurons in Rat Somatosensory Cortex: Type 1 and Type 2 Dynamics; JN Physiol October 1, 2004 vol. 92 no. 4 2283–2294.

Contreras, D. (2004) Electrophysiological classes of neocortical neurons. Neural Networks Volume 17, Issues 5-6, Pages 633-646. June-July 2004.

Steriade, M. (2004) Neocortical Cell Classes Are Flexible Entities; Nature Reviews Neuroscience 5, 121–134.

Steriade, M., et al. (1998) Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30-40 Hz) spike burst. Journal of Neurophysiology 79(1), 483–490.

Wang, X. J. (1999) Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons. Neuroscience. 1999 Mar;89(2):347–62.

Wang, J., et al. (2011) Cytotoxicity of single-walled carbon nanotubes on PC12 cells, Toxicology in Vitro 25. 242–250.

Rubel E.W., Parks, T.N. (1975) Organization and development of brain stem auditory nuclei of the chicken: tonotopic organization of n. magnocellularis and n. laminaris. J Comp Neurol. 1975, 164:411–433.

VanRullen; R., Thorpe, S.J. (2001); Rate Coding vs Temporal Order Coding: What the Retinal Ganglion Cells tells the Visual Cortex. Neural Comput. 2001 Jun;13(6):1255–83.

Kuznetsova, M.S., et al. (2008) Adaptation of Firing Rate and Spike Timing Precision in the Avian Cochlear Nucleus; J Neurosci. 2008 November 12; 28(46): 11906–11915.

Fields, D.M., Weisberg, M.J., (2004) Rapid firing rates from mechanosensory neurons in copepod antennules; J Comp Physiol A (2004) 190: 877–882. DOI 10.1007/s00359–004–0543–2.

Israelachvili, J.N. (1992) Intermolecular and Surface Forces, Second Edition, Academic Press, NY, 1992.

Lehr, L., et al. (1999) Electron Solvation in Finite Systems: Femtosecond Dynamics of Iodide-(Water)n Anion Clusters. Science 284(23 April 1999):635–638.

Dubach, J. et al. (2008) Abstract 1879: Novel Intracellular Sodium Nanosensors to Study Sodium Dynamics in Cardiomyocytes. Circulation 2008;118:S–399.

Li, Y., Gregory, S. (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochimicaet Cosmochimica Acta 38(1974):703–714.

Li, C., et al. (2001) Chaos in a three-neuron hysteresis hopfield-type neural networks. Physics Letters A, 285, 368–372.

Lin, C.M., (2009) Flexible carbon nanotubes electrode for neural recording. BiosensBioelectron. 2009 May 15;24(9):2791-7.

NanoMedLabs (2010) Nano Patch-Clamp (NPC): Development of a High-Throughput System Based On Planar Patch-Clamp. 15 July 2010. Website: http://www.nanomed.unige.it/Projects/NPC.htm

Electronic BioSciences (2013) High performance single ion channel recordings at a low cost. Website: http://www.electronicbio.com.

Novak, P., et al. (2013) Nanoscale-Targeted Patch-Clamp Recordings of Functional Presynaptic Ion Channels. Neuron 79, 1067–1077.

Veitinger, S. (2011) The Patch-Clamp Technique:An Introduction. Website: http://www.leica-microsystems.com/science-lab/the-patch-clamp-technique/

DeFelice, L.J. (1981) Introduction to Membrane Noise. Plenum Press, New York.

Lauger, P. (1984) Current noise generated by electrogenic ion pumps. EurBiophys J 11(2): 117–128.

Smyth, J.W., Shaw, R.M., (2010), Forward trafficking of ion channels: What the clinician needs to know. Heart Rhythm. 2010 Aug;7(8):1135–40.

Angelides K.J. et al. (1988) Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J. Cell Biol. 106, 1911–25.

Cohen-Karni, T., et al. (2012) Synthetically Encoded Ultrashort-Channel Nanowire Transistors for Fast, Pointlike Cellular Signal Detection, Nano Lett. 2012;12;2639−2644.

Tian, B., et al. (2010) Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 13 August 2010: Vol. 329 no. 5993 pp. 830–834.

Duan, X., et al. (2011) Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol 7: 174–179.

Duan, X., et al. (2013); Nanoelectronics Meets Biology: From New Nanoscale Devices for Live-Cell Recording to 3D Innervated Tissues; Chem. Asian J. 2013, 8, 2304 –2314.

Shimada, T., et al. (2004) Double-wall carbon nanotube field-effect transistors: Ambipolar transport characteristics, Appl. Phys. Lett. 84, 2412.

Cao, D. et al. (2012) Electronic sensitivity of a single-walled carbon nanotube to internal electrolyte composition. Nanotechnology, 2012 Mar 2;23(8):085203.

Aoki, K., et al. (2010) Fabrication of glass-coated electrodes with nano and micrometer size by means of dissolution with HF. ElectrochimicaActa, Volume 55, Issue 24, 1 October 2010, Pages 7328–7333.

Fujisawa, T. (2006) Bidirectional Counting of Single Electrons. Science, June 2006. Vol. 312 no. 5780 pp. 1634–1636

Lambert, N. J., et al. (2014); A charge parity ammeter, 2014 American Chemical Society, Nano Lett. 2014, 14, 1148−1152.

Park, K., et al. (2012) Single Molecule Quantum Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature. ACS Nano, 2012, 6, 10013–10023.

Tyner, K. M., et al. (2007). “Nanosized Voltmeter” Enables Cellular-Wide Electric Field Mapping. Biophysical Journal, 93(4), 1163–1174.

Dergan, A. (2010) Electronic and transport properties of carbon nanotubes, University of Ljubljana, Faculty of Mathematics and Physics, 2010.

Uryu, S. (2004); Electronic states and quantum transport in double-wall carbon nanotubes, Physical Review B 69, 075402.

Bacsa, R.R. (2003) Narrow diameter double-wall carbon nanotubes: synthesis, electron microscopy and inelastic light scattering. New Journal of Physics 5:131.1–131.9

Roman, C., et al. (2010) Single-Walled Carbon Nanotube Sensor Concepts; Springer Handbook of Nanotechnology, 2010, pp 403-425.

Mehrabani, S., et al. (2014) Hybrid Integrated Label-Free Chemical and Biological Sensors, Sensors 2014, 14, 5890-5928.

Zhang, Y. et al. (2010) Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived PC12 Cells. ACS Nano, 2010, 4 (6), pp 3181–3186.

Silva, G.A. (2009) Shorting neurons with nanotubes. Nature Nanotechnology 4, 82-83.

Voge, C.M., Stegemann, J.P. (2011) Carbon nanotubes in neural interfacing applications. J Neural Eng 8.

Yoon, I., et al. (2013) Intracellular neural recording with pure carbon nanotube probes, PLoS One. 2013 Jun 19;8(6).

Kim, W., et al. (2003) Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors, Nano Letters 3(2):193-198.


Refbacks

  • There are currently no refbacks.