Open Access Open Access  Restricted Access Subscription or Fee Access

Magnetorheological Fluids as A Smart Material; A Prospect for Medical and Technological Application

Gizachew Diga Milki

Abstract


The effect of magnetic field on honey and blood, yolk and lave lake is investigated. The study reveals that the magnetic field guided bee honey and blood exhibits the magnetorheological fluid characteristics. The magneto resistive contribution is treated in terms of drug force in order to determine the coefficient of viscosity. The research presents that the viscosity of studied fluids will increase with the application of magnetic field. The variables accounting for the resulting coefficient of viscosity are shear strain, magnetic field, density of the fluids, frequency of oscillators and displacement. On the other hand, the action of controlled fields on Bee honey, blood, yolk and Lava Lake shows their electrical energy storing capacity (Inductor). From the two competing properties, it is possible to determine the dispersion relation. This relation reveals that the angular frequency is a function of mass, electric charge, magnetic field and position. From the crystal, dynamics the relations MRF/FF is determined and compared with dispersions of solids (phonons), plasma, and spin excitations (Magnons). This paper is aimed to investigate some of new features and applications of these fluids in medicine, electronics, surface engineering, automotive, energy, and electroplating.


Keywords


Magnetic field, Magnetorheological fluid, Nanofluids, Nanoparticle, Biocompatible and Biomarkers.

Full Text:

PDF

References


Saiful Amri Bin Mazlan B. Eng., M. Eng., P. Eng., Miem, Miei, the behavior of magnetorheological fluids in squeeze mode, 2008.

P.P. Phule, Magnetorheological (MR) Fluids: Principles and Applications, Smart Materials Bulletin, 2001.Vol. 2, No. 2, 7–10.

Ladislau Vekas, Ferrofluids and Magnetorheological Fluids, Advances in Science and Technology Vol. 54 (2008) PP. 127–136

A. Jordan et al. Int. Hyperthermia, 1997,V. 13,No-6, PP. 587–605

Anwar Saeed et al. 2021

Rasoul Bayaniahangar, Shahab Bayani Ahangar, Zhongtian Zhang, Bruce P.Lee, Joshua M. Pearce. 3-D printed magnetic soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxane. Sensors and Actuators B: Chemical 326, (2021), 128781

Minnesota Department of Health | ELL Curriculum Project, 2014

Abdul Rauf, a dielectric study on human blood and plasma, international Journal of Science, Environment and Technology, 2013. Vol. 2, No 6, 1396–1400.

S. Abdalla, S.S. Al-ameer, and S. H. Al-Magaishi, Electrical properties with relaxation through human blood, Bio micro fluidics 2010. V. 4, 034–101.

Herman P. Schwan, P H. D. and Calvin F. Kay, M.D. Specific resistance of body tissues, Circulation Research. 1956, Volume 4, 6–664

Amel Boussaid, Moncef Chouaibi, Leila Rezig, Raoudha,Hellal, Francesco Donsi, Giovanna Ferrari, Salem Hamidi, Arabian J. chem. 2014, 1878-5352

Anna Púscion-Jakubik *, Maria Halina Borawska and Katarzyna Socha, Foods, 2020, V-9, 1028

Rasoul Bayaniahangar, Shahab Bayani Ahangar, Zhongtian Zhang, Bruce P.Lee, Joshua M. Pearce. 3-D printed magnetic soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxane. Sensors and Actuators B: Chemical 326, (2021), 128781

Youness Filali, Mustapha Er-Riani, Mustapha El Jarroudi, the deformation of a Ferro fluid drop under a uniform magnetic field. Elivester. Ltd. 2018. 0020–7462

Maciej Zborowski, Graciela R.Ostera, Lee R. Moor, Sarah Milliron, Jeffery J.C. Chalmers and Alan N. Schechter, J. Biophy. 2003 Apr; 84 (4): 2638–2645.

Youne ss Filali, Mustapha Er-Riani, Mustapha El Jarroudi, the deformation of a Ferro fluid drop under a uniform magnetic field. Elivester. Ltd. 2018. 0020–7462

Conference: Exploring materials, ferrofluids, 2010.

Xiaojie wang and Faramarz Gordaninej, study of magnetorheological fluids at high shear rates,2006, V.45:899–908.

P.R. Hoskins, Ultrasound techniques for measurement of blood flow and tissue motion, IOP, 2002. 006–355X/02

S. Zannella, biological effects of magnetic fields; Italy

Soumaya Ghodbane, Aida Lahbib, Mohsen Sakly, and Hafedh Abdelmelek, Volume 12. 602–987, P.P. (2013)

Sharif, S. Amiri, in Journal of Magnetism and Magnetic Materials, 2012, V-324, PP. 903–915

Eak Raj Paudel, 2018

Vennemann B. Obrist D, Ro ̈sgen TA smartphone-enabled wireless and batteryless implantable blood flow sensor (2020).

Iain D. Croall et al. 2018 [17]

Nanotechnology in nature, Hyperlink:http://www.nanovations.com.au

Lydie Gailler and James P. Kauahikaua, Monitoring the cooling of the 1959 Kilauea Iki lava lake using surface magnetic measurements, Springer, 2007, V. 79, 40, PP-1–7

Charles Kittel. Introduction to solid state physics, 8th edt. John Wiley & Sons, Inc, USA. 2005.

Neil W. Ashcroft and N. Mermin, Solid state Physics, 1975

James Patterson, and Bernard Bailey, Introduction to solid state Physics, 2010, pp. 356–461.


Refbacks

  • There are currently no refbacks.