Open Access Open Access  Restricted Access Subscription or Fee Access

A Review on Polybutadiene Rubber Composites

Amit Kumar, Subhra Mohanty, Virendra Kumar Gupta

Abstract


Rubber composites are crucial materials that obtained by the combination of two or more components i.e. rubber and filler, comprising with different fundamental properties. The composites are lighter yet stronger materials in nature with intermediate characteristics of both the initial ingredients. Polybutadiene rubber (PBR) is one of the highly produced global synthetic rubber having significant industrial applications. PBR composites showed improved physical, mechanical and thermal properties, with greater strength, resistance to heat and ageing effect over raw rubber and offered significant advantages towards various industrial applications. The research revealed that the material properties of PBR composites can be tuned by selecting the reinforcement material and also influenced by changing the combinations of PBR and filler ratio. Further, various curing process has also influenced the properties of resulting composite materials. Moreover, varying the combination of PBR matrix, reinforcing material and reaction conditions resulted novel material that meets the preferred industrial requirements towards particular applications. Therefore, PBR composites with targeted properties can be synthesized by modifying the reinforcing materials in both the qualitative and quantitative ways. In current review, different PBR composites prepared by using silica, carbon and graphene based fillers have been covered. Besides PBR, functionalized PBR such as epoxy and hydrogenated PBR based composites has also been included in this study. The effect of shape and size of filler material on properties of PBR composites has also been discussed. Further, the effect of reinforcing material on the physical and mechanical properties of PBR has been included.

 

Keywords: Carbon, composites, filler, graphene, polybutadiene rubber, silica


Full Text:

PDF

References


J. Wang, K. Zhang, Z. Cheng, M. Lavorgna, H. Xia, Graphene/carbon black/natural rubber composites prepared by a wet compounding and latex mixing process, Plastics, Rubber and Composites, 2018 DOI: 10.1080/14658011.2018.1516435.

I. S. Fahim, S. M. Elhaggar, Ha. Elayat, Experimental Investigation of Natural Fiber Reinforced Polymers, Materials Sciences and Applications, 2012, 3, 59-66.

A. Khalil, N. S. Shaikh, R. Z. Nudrat, M. Khalid, Effect of micro-sized marble sludge on physical properties of natural rubber composites, Chem Indust Chem Eng Quart 2013 19: 281-293.

P. Mente, T. E. Motaung, S. P. Hlangothi, Natural Rubber and Reclaimed Rubber Composites – A Systematic Review, polym Sci. 2016, DOI: 10.4172/2471-9935.100015.

H. Ku, H. Wang, N. Pattarachaiyakoop, N. Trada, A review on the tensile properties of natural fiber reinforced polymer composites, Comp Part B, 2011, 42, 856-873.

H. Ismail, M. R. Edyham, B. Nirjosentono, Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent, Polym Test Part B, 2002, 21, 139-144.

Z. Zhu, T. Thompson, S.-Q. Wang, E. D. von Meerwall, A. Halasa, Investigating Linear and Nonlinear Viscoelastic Behavior Using Model Silica-Particle-Filled Polybutadiene, Macromolecules 2005, 38, 8816-8824.

A. Ansarifar, L. Wang, R. J. Ellis, Y. Haile-Meskel, Novel technique for crosslinking and reinforcing high‐cis polybutadiene rubber using a silanized silica nanofiller, Journal of Applied Polymer Science, 2007, 106, 1135–1145.

R. Thimmaiah, S. Siddaramaiah, Investigation of carbon black and metakaolin cofillers content on mechanical and thermal behaviors of natural rubber compounds, J Elastomers Plast 2013, 45, 187-198.

M. Song, C. Wong, J. Jin, A. Ansarifar, Z. Zhang, Preparation and characterization of poly(styrene‐co‐butadiene) and polybutadiene rubber/clay nanocomposites, Polym Int 2005, 54, 560-568.

D. Zhou, J. E. Mark, Preparation and Characterization of trans‐1,4‐Polybutadiene Nanocomposites Containing in situ Generated Silica, J Macromol Sci Pure Appl Chem 2004, 41, 1221-1232.

S. Mishra and N. G. Shimpi, Studies on Mechanical, Thermal, and Flame Retarding Properties of Polybutadiene Rubber (PBR) Nanocomposites, DOI: 10.1080/03602550701580987

S. V. Patwardhan, V. P. Taori, M. Hassan, N. R. Agashe, J. E. Franklin, G. Beaucage, J. E. Mark, S. J. Clarson, An investigation of the properties of poly(dimethylsiloxane)-bioinspired silica hybrids, Eur Polym J 2006, 42,167-178.

L. Chazeau, C. Gauthier, J. M. Chenal, Mechanical properties of rubber nanocomposites: how, why … and then?. In: Rubber nanocomposites. John Wiley & Sons, Ltd; 2010. p. 291-330.

Mullins L., Effect of Stretching on the Properties of Rubber, Rubber Chem Technol, 1948, 21, 281-300.

J. A. C. Harwood, A. R. Payne, Stress softening in natural rubber vulcanizates. Part III. Carbon black‐filled vulcanizates, J Appl Polym Sci 1966, 10, 315-324.

Y. Zhang, J. E. Mark, Y. Zhu, R. S. Ruoff, D. W. Schaefer, Mechanical properties of polybutadiene reinforced with octadecylamine modified graphene oxide, Polymer, 2014, 55, 5389-5395.

M. A. Martins, I. Joekes, Tire rubber–sisal composites: Effect of mercerization and acetylation on reinforcement, J Appl Polym Sci, 2003, 89, 2507-2515.

O. I. Oluwole, O. M. Avwerosuoghene, A. J. Oluwatobi, The effect of natural rubber on the flexural properties of coconut coir (cocos nucifera) reinforced red sand composites, Acta Technica Corviniensis- Bull Eng, 2015, 8, 87-92.

H. Ismail, P. Pasbakhsh, M. N. A. Fauzi, A. A. Bakar, Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites, Polym Test, 2008 27, 841-850.

M. Mondragog, E. M. Hernandez, J. L. Rivera-Armenta, F. J. Rodriguez- Gonzalez Injection molded thermoplastic starch/natural rubber/clay nanocomposites: Morphology and mechanical properties, Carbohyd. Polym, 2009, 77, 80-86.

B. P. Kapgate, C. Das, A. Das, D. Basu, S. Wiessner, U. Reuter, G. Heinrich, Reinforced chloroprene rubber by in situ generated silica particles: Evidence of bound rubber on the silica surface, J. Appl. Polym. Sci. 2016, DOI: 10.1002/app.43717

A. Elıas-Zuniga, k. Baylon, L. Ferrer, L. Sereno, M. L. Garcıa-Romeu, I. Bagudanch, J. Grabalosa, T. Perez-Recio, O. Martınez-Romero, W. Ortega-Lara, L. E. Elizalde, On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials, Materials 2014, 7, 441.

Zhu, J.; Wei, S.; Ryu, J.; Budhathoki, M.; Liang, G.; Guo, Z. In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites, J. Mater. Chem. 2010, 20, 4937.

J. Zhu, S. Wei, A. Yadav, Z. Guo, Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers, Polymer, 2010, 51, 2643.

J. Zhu, X. Zhang, N. Haldolaarachchige, Q. Wang, Z. Luo, J. Ryu, D. P. Young,S. Wei, Z. J. Guo, Polypyrrole metacomposites with different carbon nanostructures, J. Mater. Chem. 2012, 22, 4996.

J. Kiji, H. Konishi, T. Taninaka, T. Okano, S. Yamashita, S. Kohjiya, Calcium carbonate modified with 1,2‐polybutadiene. A potential reinforcing filler for synthetic rubber, Macromol. Mater. Eng. 1983, 111, 53.

T. Ji, C. Ma, L. Brisbin, Y. Dong, J. Zhu, J. Appl. Polym. Sci. 2018, Effect of interface on the mechanical behavior of polybutadiene–silica composites: An experimental and simulation study, DOI: 10.1002/APP.46089

P. S. Stephanou, V. G. Mavrantzas, Quantitative predictions of the linear viscoelastic properties of entangled polyethylene and polybutadiene melts via modified versions of modern tube models on the basis of atomistic simulation data, J. Non-Newtonian Fluid Mechanics, 2013, 200, 111.

I. M. Balashova, R. G. Buduen, and R. P. Danner, Solubility of organic solvents in 1,4-cis-polybutadiene, Fluid Phase Equilibria, 2012, 334, 10–14.

V. K. Srivastava, M. Maiti, and R. V. Jasra, Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites, European Polymer Journal, 2011, 47, 2342–2350.

F. Wang, L. Feng, Q. Tang, H. Liu, H. Liu, Preparation and Performance of cis-Polybutadiene Rubber Composite Materials Reinforced by Organic Modified Palygorskite Nanomaterials, J. Nanomat. 2013, DOI; 10.1155/2013/936838.

E. L. Warrick, O. R. Pierce, K. E. Polmanteer, J. C. Saam, Silicone Elastomer Developments 1967–1977, Rubber Chem Technol, 1979, 52, 437.

S. M. Hosseini, N. Torbati-Fard, H. Kiyani, M. Razzaghi-Kashani, Comparative role of Interface in reinforcing mechanisms of Nano silica modified by Silanes and liquid rubber in SBR composites, J. Polym. Res. 2016, 23, 203.

Y. Nakamura, H. Honda, A. Harada, S. Fujii, K. Nagata, Mechanical properties of silane‐treated, silica‐particle‐filled polyisoprene rubber composites: Effects of the loading amount and alkoxy group numbers of a silane coupling agent containing mercapto groups, J. Appl. Polym. Sci. 2009, 113, 1507.

Y. Lin, S. Liu, J. Peng, L. Liu, The filler–rubber interface and reinforcement in styrene butadiene rubber composites with graphene/silica hybrids: A quantitative correlation with the constrained region, Compos. Part A: Appl. Sci. Manuf. 2016, 86, 19.

F. Cataldo, Preparation of silica‐based rubber compounds without the use of a silane coupling agent through the use of epoxidized natural rubber, Macromol. Mater. Eng. 2002, 287, 348.

H. H. Le, M. Keller, M. Hristov, S. Ilisch, T. H. Xuan, Q. K. Do, T. Pham, K. W. Stockelhuber, G. Heinrich, H. J. Radusch, Selective wetting and localization of silica in binary and ternary blends based on styrene butadiene rubber, butadiene rubber, and natural rubber, Macromol. Mater. Eng. 2013, 298, 1085.

N. S. Rios, M. P. Pinheiro, J. C. S. dos Santos, S. T. Fonseca, L. D. Lima, M. C. de Mattos, D. M. G. Freire, I. J. da Silva, E. Rodrıguez-Aguado, L. R. B. Goncalves, Strategies of covalent immobilization of a recombinant Candida antarctica lipase B on pore-expanded SBA-15 and its application in the kinetic resolution of (R,S)-Phenylethyl acetate, J. Mol. Catal. B: Enzym. 2016, 133, 246.

K. Kempfer, J. Devémy, A. Dequidt, M. Couty, and P. Malfreyt, Atomistic descriptions of the cis-1,4-polybutadiene/silica interfaces, ACS Appl. Polym. Mater. 2019, 1, 969−981.

X. Liu, S. Zhao, X. Zhang, X. Li, Y. Bai, Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites, Polymer 2014; 55, 1964–1976.

K. Kim, P. Saha, J.-H. Kim, S.-H. Jo and J. K. Kim, Novel elastomer nanocomposite with uniform silica dispersion from polybutadiene rubber treated with epoxidized soybean oil, J. Comp. Mat., DOI: 10.1177/0021998314559061.

L. Chen, Z. Jia, Y. Tang, L. Wu, Y. Luo, D. Jia, Novel functional silica nanoparticles for rubber vulcanization and reinforcement, Compos. Sci. Technol. 2017, 144, 11.

X. Wang, Y. Zhang, W. Luo, A. A. Elzatahry, X. Cheng, A. Alghamdi, A. M. Abdullah, Y. Deng, D. Zhao, Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted stöber method, Chem. Mater. 2016, 28, 2356.

H. H. Le, K. Oßwald, S. Ilisch, T. Pham, K. W. St€ockelhuber, G. Heinrich, H. J. Radusch, Silica transfer in ternary rubber blends: calculation and experimental determination, Macromol. Mater. Eng. 2012, 297, 464.

D. Edwards, Polymer-filler interactions in rubber reinforcement, J. Mater. Sci. 1990, 25, 4175.

K. W. St€ockelhuber, A. S. Svistkov, A. G. Pelevin, G. Heinrich, Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites, Macromolecules 2011, 44, 4366.

J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites—a review, Mater. Sci. Eng. A: Struct. Mater. 2005, 393, 1.

Y. Zhou, Y. Zhou, H. Deng, Q. Fu, A novel route towards tunable piezoresistive behavior in conductive polymer composites: Addition of insulating filler with different size and surface characteristics, Compos. Part A: Appl. Sci. Manuf. 2017, 96, 99.

M. Maiti, G. C. Basak, V. K. Srivastava, R. V. Jasra, Mesoporous silica reinforced polybutadiene rubber hybrid composite, Int J Ind Chem, 2016, 7, 131-141.

A.P. Rao, A.V. Rao, G.M. Pajonk, Hydrophobic and physical properties of the two step processed ambient pressure dried silica aerogels with various exchanging solvents J. Sol–Gel Sci. Technol. 2005, 36, 285–292.

S.D. Bhagat, A.V. Rao, Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process, Appl. Surf. Sci. 2006, 252, 4289–4297.

D. Haranath, P. B. Waagh, G. M. pajonk, A. V. Rao, Influence of sol-gel processing parameters on the ultrasonic sound velocities in silica aerogels, Mater. Res. Bull. 1997, 32, 1079–1089.

A. Saboktakin, M. R. Saboktakin, Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications, Int. J. Biol. Macromol., 2015, 72, 230-234

A. Saboktakin, M. R. Saboktakin, Improvements of physical, mechanical and biodegradation properties of polybutadiene rubber insulators by chitosan and silica nanoparticles, Int. J. Biol. Macromol., 2016, 91, 1194-1198

T. Tancharernrat, G. L. Rempel, and P. Prasassarakich; Synthesis of polybutadiene-silica nanoparticles via differential microemulsion polymerization and their hydrogenated nanoparticles by diimide reduction, Polym. Degrad. Stabil, 2015, 118, 69-81.

G. Kwag, P. Kim, S. Han, H. Choi, Ultra high cis polybutadiene by monomeric neodymium catalyst and its tensile and dynamic properties, Polymer 2005, 46, 3782.

G. Kwag, P. Kim, S. Han, S. Lee, H. Choi, S. Kim, High performance elastomer composites containing ultrahigh cis polybutadiene with high abrasion and low rolling resistances, J. of App. Poly. Sci., 2007, 105, 477.

V. Gonçalez, F. L. Barcia and B. G. Soares, Composite Materials Based on Modified Epoxy Resin and Carbon Fiber, J. Braz. Chem. Soc., 2006, 17, 1117.

F. Barcia, B. G. Soares, M. Gorelova, J. A. Cid, The effect of hydroxyl‐terminated polybutadiene‐grafted carbon fiber on the impact performance of carbon fiber–epoxy resin composites, J. Appl. Polym. Sci., 1999, 74, 1424–1431.

D. De, P. K. Panda, M. Roy, S. Bhunia, Reinforcing effect of reclaim rubber on natural rubber/polybutadiene rubber blends, Materials and Design 2013, 46,142-150.

K. Wang, G. M. Zhu, F. Ren, X. G. Yan and X. P. Cui, The effects of carbon fiber on electroactive shape memory behaviors of cyanate/polybutadiene epoxy/carbon black composites J. Reinf. Plast. Compos. 2016, 35, 556-565.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett 2008, 8, 902-907.

W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R. S. Ruof, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano. Lett. 2010, 10, 1645-1651.

J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, L. Shi, Two-dimensional phonon transport in supported graphene, Science 2010, 328, 213-216.

B. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: A review, J Mater Sci 2008, 43, 5092-5101.

Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors, Small 2012, 8, 1805-1834.

Z. Yang, J. Liu, R. Liao, G. Yang, X. Wu, Z. Tang, B. Guo, L. Zhang, Y. Ma, Q. Nie, F. Wang, Rational design of covalent interfaces for graphene/elastomer nanocomposites, Compos Sci Technol. 2016, 132, 68–75.

S. Araby, L. Zhang, H-C. Kuan, J-B. Dai, P. Majewski, J. Ma, A novel approach to electrically and thermally conductive elastomers using graphene, Polymer 2013, 54, 3663-3670.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, R. S. Ruoff, Graphene-based composite materials, Nature 2006, 442, 282-286.

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J. M. D. Tascon, Graphene oxide dispersions in organic solvents, Langmuir 2008, 24, 10560-10564.

D. R. Dreyer, S. Park, C. Bielawski, R. Ruoff, The chemistry of graphene oxide, Chem Soc Rev 2010, 39, 228-240.

K. Haubner, J. Murawski, P. Olk, L. M. Eng, C. Ziegler, B. Adolphi, E. Jaehne, The route to functional graphene oxide, ChemPhysChem 2010, 11, 2131-2139.

A. Malas, P. Pal, C. K. Das, Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends, Materials and Design, 2014, 55, 664–673.


Refbacks

  • There are currently no refbacks.