Open Access Open Access  Restricted Access Subscription or Fee Access

Viscoelastic Properties of Polymer Nanocomposites with Polydispersity in Nanoparticle Sizes

Koteswara Rao Medidhi, Venkat Padmanabhan

Abstract


The viscoelastic properties of polymer nanocomposites are investigated as a function of the size distribution of nanoparticles, the nature of interactions and results are compared with the pure polymer melt. We modeled our PNCs with two sizes of nanoparticles and polymer blends and four different cases with different polymer-nanoparticle and nanoparticle-nanoparticle non-bonded interactions. We have observed the enhancement in properties is not only due to the addition of nanoparticles but also due to the role of the interface between polymer chains and nanoparticles. The viscosity was unaffected by an increase in the presence of bigger nanoparticle with neutral interactions, which is due to the low concentration of nanoparticle. In presence of attractive interactions between polymer and nanoparticles, we observed viscosity of system monotonically decreased with an increase in the presence of bigger nanoparticle, which is due to a decrease in the availability of surface area of nanoparticle for polymer segments to adsorb. In the presence of long-range attractions between small and big nanoparticles, we observed non-monotonous behavior due to the interactions between the particles. It was observed that smaller size nanoparticles formed a thick layer on the polymer layer on big nanoparticles because of interactions that lead to enhancement in the visco-elastic properties by decreasing in the dynamics of polymer chains. Our results indicate that the local chain dynamics and the behavior of monomer segments at the polymer-particle interface have a strong influence on the viscoelastic behavior of polymer nanocomposites.

 


Full Text:

PDF

References


J. Shen, Z. Song, X. Qian, F. Yang, and F. Kong, BioResources 5, 1328 (2010).

Z. G. Gong, in Advanced Materials Research, Vol. 662 (Trans Tech Publ, 2013) pp. 186{189.

A. Seeboth, R. Ruhmann, and O. Muhling, “Thermotropic and thermochromic polymer-based materials for adaptive solar control.-materials.-3.-p. 5143-5168.” (2010).

A. Patil and M. S. Ferritto, in Polymers for Personal Care and Cosmetics (ACS Publications, 2013) pp. 3-11.

G. Pandey and E. T. Thostenson, Polymer Reviews 52, 355 (2012).

L. L. Beecroft and C. K. Ober, Chemistry of materials 9, 1302 (1997).

R. Gangopadhyay and A. De, Chemistry of materials 12, 608 (2000).

S. K. Kumar and R. Krishnamoorti, Annual review of chemical and biomolecular engineering 1, 37 (2010).

C. Xu, K. Ohno, V. Ladmiral, D. E. Milkie, J. M. Kikkawa, and R. J. Composto, Macromolecules 42, 1219 (2009).

Y. Tu, L. Zhou, Y. Z. Jin, C. Gao, Z. Z. Ye, Y. F. Yang, and Q. L. Wang, Journal of Materials Chemistry 20, 1594 (2010).

C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, Macromolecules 35, 8825 (2002).

J. T. Kalathi, U. Yamamoto, K. S. Schweizer, G. S. Grest, and S. K. Kumar, Physical review letters 112, 108301 (2014).

V. Pryamtisyn, V. Ganesan, A. Z. Panagiotopoulos, H. Liu, and S. K. Kumar, “Modeling the

anisotropic self-assembly of spherical polymer-grafted nanoparticles,” (2009).

D. Meng, S. K. Kumar, J. M. D. Lane, and G. S. Grest, Soft Matter 8, 5002 (2012).

Z. Zheng, G. Hou, X. Xia, J. Liu, M. Tsige, Y. Wu, and L. Zhang, The Journal of Physical Chemistry B 121, 10146 (2017).

K. R. Medidhi and V. Padmanabhan, The Journal of Chemical Physics 150, 044905 (2019).

K. Binder, Monte Carlo and molecular dynamics simulations in polymer science (Oxford University Press, 1995).

R. Krishnamoorti, J. Ren, and A. S. Silva, The Journal of Chemical Physics 114, 4968 (2001).

F. W. Starr, T. B. Schr_der, and S. C. Glotzer, Physical Review E 64, 021802 (2001).

G. Tsagaropoulos and A. Eisenberg, Macromolecules 28, 6067 (1995).

G. Tsagaropoulos and A. Eisenburg, Macromolecules 28, 396 (1995).

T. McNally, P. Potschke, P. Halley, M. Murphy, D. Martin, S. E. Bell, G. P. Brennan, D. Bein, P. Lemoine, and J. P. Quinn, Polymer 46, 8222 (2005).

Q. Zhang and L. A. Archer, Langmuir 18, 10435 (2002).

J. Ren, A. S. Silva, and R. Krishnamoorti, Macromolecules 33, 3739 (2000).

R. Krishnamoorti and E. P. Giannelis, Macromolecules 30, 4097 (1997).

A. L. Frischknecht, M. J. Hore, J. Ford, and R. J. Composto, Macromolecules 46, 2856 (2013).

A. Payne, Journal of Applied Polymer Science 9, 2273 (1965).

Y. Termonia, Journal of Polymer Science Part B: Polymer Physics 48, 687 (2010).

T. Kataoka, T. Kitano, M. Sasahara, and K. Nishijima, Rheologica Acta 17, 149 (1978).

L.-H. Cai, S. Panyukov, and M. Rubinstein, Macromolecules 44, 7853 (2011).

D. Sunday, J. Ilavsky, and D. L. Green, Macromolecules 45, 4007 (2012).

D. Meng, S. K. Kumar, S. Cheng, and G. S. Grest, Soft Matter 9, 5417 (2013).

D. Maillard, S. K. Kumar, A. Rungta, B. C. Benicewicz, and R. E. Prud'homme, Nano letters 11, 4569 (2011).

P. Akcora, H. Liu, S. K. Kumar, J. Moll, Y. Li, B. C. Benicewicz, L. S. Schadler, D. Acehan, A. Z. Panagiotopoulos, V. Pryamitsyn, et al., Nature materials 8, 354 (2009).

S. Sen, J. D. Thomin, S. K. Kumar, and P. Keblinski, Macromolecules 40, 4059 (2007).

V. Pryamitsyn and V. Ganesan, Macromolecules 39, 844 (2006).

G. D. Smith, D. Bedrov, L. Li, and O. Byutner, The Journal of chemical physics 117, 9478 (2002).

G. D. Hattemer and G. Arya, Macromolecules 48, 1240 (2015).

F. W. Starr, J. F. Douglas, and S. C. Glotzer, The Journal of chemical physics 119, 1777 (2003).

J. B. Hooper and K. S. Schweizer, Macromolecules 39, 5133 (2006).

J. B. Hooper and K. S. Schweizer, Macromolecules 38, 8858 (2005).

G. S. Grest and K. Kremer, Physical Review A 33, 3628 (1986).

J. D. Weeks, D. Chandler, and H. C. Andersen, The Journal of chemical physics 54, 5237 (1971).

S. Plimpton, P. Crozier, and A. Thompson, Sandia National Laboratories 18, 43 (2007).

K. Kremer and G. S. Grest, The Journal of Chemical Physics 92, 5057 (1990).

M. P. Allen and a. Tildesley, D. J., Computer simulation of liquids (Oxford : Clarendon Press ; New York : Oxford University Press, 1987) includes index.

M. E. Mackay, T. T. Dao, A. Tuteja, D. L. Ho, B. Van Horn, H.-C. Kim, and C. J. Hawker, Nature materials 2, 762 (2003).

A. Tuteja, M. E. Mackay, C. J. Hawker, and B. Van Horn, Macromolecules 38, 8000 (2005).

J. T. Kalathi, G. S. Grest, and S. K. Kumar, Physical review letters 109, 198301 (2012).

G. Batchelor, Journal of fluid mechanics 83, 97 (1977).

T. Kanaya, I. Tsukushi, and K. Kaji, Progress of Theoretical Physics Supplement 126, 133 (1997).

S. Chandran, N. Begam, V. Padmanabhan, and J. Basu, Nature communications 5, 3697 (2014).

C. Bennemann, C. Donati, J. Baschnagel, and S. C. Glotzer, Nature 399, 246 (1999).

N. Begam, N. Das, S. Chandran, M. Ibrahim, V. Padmanabhan, M. Sprung, and J. Basu, Soft Matter 14, 8853 (2018).




DOI: https://doi.org/10.37628/ijpse.v5i2.610

Refbacks

  • There are currently no refbacks.