Open Access Open Access  Restricted Access Subscription or Fee Access

Integrative Network Pharmacology and Molecular Docking Analysis Reveals Potent Inhibition of Ovarian Cancer-Associated Proteins by Curcuma Longa Derivatives

Nirali Patel

Abstract


Objectives: A network pharmacology approach and molecular docking study were employed to explore how the active ingredients of Curcuma longa interact with protein targets associated with ovarian cancer. The objective was to explore the mechanism of action of these active ingredients. Methods: In this study, a total of 14 derivatives of Curcuma longa were selected to evaluate their binding affinity with specific target proteins (HLA, CDK-41, EGFR, Tumor suppressor p53 and BAX protein). Molecular docking was conducted using the virtual tool PyRx. Computational analysis was conducted using data and molecular structures obtained from Indian medicinal plants, as well as information from sources such as phytochemistry and therapeutics databases and PubChem. The protein structure underwent validation through several tools, such as PDBsum and BIOVIA Discovery Studio software. ADMET filters were utilized for the pharmacological assessment of the ligands, aiming to analyze their absorption, distribution, metabolism, excretion, and toxicity characteristics. Result: Based on the findings from the molecular docking study, it was observed that the ligands 3-beta-GlycocholicAcid, Cyclocurcumin, 3-Hydroxy-1,7-bis(4-hydroxyphenyl)-6-heptene-1,5-dione, and 1,5-Dihydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)hepta-4,6-dien-3-one exhibited the highest binding affinity with the targeted proteins. Conclusion: The derivatives of Curcuma longa have shown promising results in inhibiting various crucial enzymes and proteins linked to ovarian cancer. These findings suggest that these derivatives could serve as potential therapeutic targets for the treatment of ovarian cancer. However, further in vitro research is necessary to validate and reinforce these observations.


Full Text:

PDF

References


Koehn, F. E.; Carter, G. T. The Evolving Role of Natural Products in Drug Discovery. Nat. Rev. Drug Discov. 2005, 4 (3), 206–220. https://doi.org/10.1038/nrd1657.

Mishra, B. B.; Tiwari, V. K. Natural Products: An Evolving Role in Future Drug Discovery. Eur. J. Med. Chem. 2011, 46 (10), 4769–4807. https://doi.org/10.1016/j.ejmech.2011.07.057.

Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79 (3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055.

Wilken, R.; Veena, M. S.; Wang, M. B.; Srivatsan, E. S. Curcumin: A Review of Anti-Cancer Properties and Therapeutic Activity in Head and Neck Squamous Cell Carcinoma. Mol. Cancer 2011, 10 (1), 12. https://doi.org/10.1186/1476-4598-10-12.

Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N. N. I. M.; Begum, M. Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; Wu, Y. S.; Sathasivam, K. V.; Lum, P. T.; Meenakshi, D. U.; Kumarasamy, V.; Azad, A. K.; Fuloria, N. K. A Comprehensive Review on the Therapeutic Potential of Curcuma Longa Linn. In Relation to Its Major Active Constituent Curcumin. Front. Pharmacol. 2022, 13, 820806. https://doi.org/10.3389/fphar.2022.820806.

Sandur, S. K.; Pandey, M. K.; Sung, B.; Ahn, K. S.; Murakami, A.; Sethi, G.; Limtrakul, P.; Badmaev, V.; Aggarwal, B. B. Curcumin, Demethoxycurcumin, Bisdemethoxycurcumin, Tetrahydrocurcumin and Turmerones Differentially Regulate Anti-Inflammatory and Anti-Proliferative Responses through a ROS-Independent Mechanism. Carcinogenesis 2007, 28 (8), 1765–1773. https://doi.org/10.1093/carcin/bgm123.

Colombo, N.; Oza, A. M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Weberpals, J. I.; Clamp, A. R.; Scambia, G.; Leary, A.; Holloway, R. W.; Gancedo, M. A.; Fong, P. C.; Goh, J. C.; O’Malley, D. M.; Armstrong, D. K.; Banerjee, S.; García-Donas, J.; Swisher, E. M.; Meunier, J.; Cameron, T.; Maloney, L.; Goble, S.; Bedel, J.; Ledermann, J. A.; Coleman, R. L. The Effect of Age on Efficacy, Safety and Patient-Centered Outcomes with Rucaparib: A Post Hoc Exploratory Analysis of ARIEL3, a Phase 3, Randomized, Maintenance Study in Patients with Recurrent Ovarian Carcinoma. Gynecol. Oncol. 2020, 159 (1), 101–111. https://doi.org/10.1016/j.ygyno.2020.05.045.

Casey, M. J.; Salzman, T. A. Reducing the Risk of Gynecologic Cancer in Hereditary Breast Ovarian Cancer Syndrome Mutation Carriers: Moral Dilemmas and the Principle of Double Effect: Moral Dilemmas and the Principle of Double Effect. Linacre Q. 2018, 85 (3), 225–240. https://doi.org/10.1177/0024363918788340.

Nakamura, K.; Shimura, N.; Otabe, Y.; Hirai-Morita, A.; Nakamura, Y.; Ono, N.; Ul-Amin, M. A.; Kanaya, S. KNApSAcK-3D: A Three-Dimensional Structure Database of Plant Metabolites. Plant Cell Physiol. 2013, 54 (2), e4. https://doi.org/10.1093/pcp/pcs186.

Sayers, E. W.; Beck, J.; Bolton, E. E.; Bourexis, D.; Brister, J. R.; Canese, K.; Comeau, D. C.; Funk, K.; Kim, S.; Klimke, W.; Marchler-Bauer, A.; Landrum, M.; Lathrop, S.; Lu, Z.; Madden, T. L.; O’Leary, N.; Phan, L.; Rangwala, S. H.; Schneider, V. A.; Skripchenko, Y.; Wang, J.; Ye, J.; Trawick, B. W.; Pruitt, K. D.; Sherry, S. T. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021, 49 (D1), D10–D17. https://doi.org/10.1093/nar/gkaa892.

Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28 (1), 235–242. https://doi.org/10.1093/nar/28.1.235.

D. Biovia, H. berman, J. westbrook, Z. feng, G. gilliland, T. bhat, T.j.t.j.o.C.p. richmond, Dassault systèmes BIOVIA, discovery studio visualizer, v. 17.2, San Diego: Dassault systèmes, 2016, 10 (2000) 0021-9991.

Laskowski, R. A.; Jabłońska, J.; Pravda, L.; Vařeková, R. S.; Thornton, J. M. PDBsum: Structural Summaries of PDB Entries. Protein Sci. 2018, 27 (1), 129–134. https://doi.org/10.1002/pro.3289.

Wiederstein, M.; Sippl, M. J. ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of Proteins. Nucleic Acids Res. 2007, 35 (Web Server issue), W407-10. https://doi.org/10.1093/nar/gkm290.

Hollingsworth, S. A.; Karplus, P. A. A Fresh Look at the Ramachandran Plot and the Occurrence of Standard Structures in Proteins. Biomol. Concepts 2010, 1 (3–4), 271–283. https://doi.org/10.1515/BMC.2010.022.

Dallakyan, S.; Olson, A. J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19.

Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7 (1), 1–13. https://doi.org/10.1038/srep42717.

Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49 (W1), W5–W14. https://doi.org/10.1093/nar/gkab255.

Banerjee, P.; Eckert, A. O.; Schrey, A. K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46 (W1), W257–W263. https://doi.org/10.1093/nar/gky318.

Banno, K.; Yanokura, M.; Iida, M.; Adachi, M.; Nakamura, K.; Nogami, Y.; Umene, K.; Masuda, K.; Kisu, I.; Nomura, H.; Kataoka, F.; Tominaga, E.; Aoki, D. Application of MicroRNA in Diagnosis and Treatment of Ovarian Cancer. Biomed Res. Int. 2014, 2014, 232817. https://doi.org/10.1155/2014/232817.

Stronach, E. A.; Cunnea, P.; Turner, C.; Guney, T.; Aiyappa, R.; Jeyapalan, S.; de Sousa, C. H.; Browne, A.; Magdy, N.; Studd, J. B.; Sriraksa, R.; Gabra, H.; El-Bahrawy, M. The Role of Interleukin-8 (IL-8) and IL-8 Receptors in Platinum Response in High Grade Serous Ovarian Carcinoma. Oncotarget 2015, 6 (31), 31593–31603. https://doi.org/10.18632/oncotarget.3415.

Kellenberger, L. D.; Bruin, J. E.; Greenaway, J.; Campbell, N. E.; Moorehead, R. A.; Holloway, A. C.; Petrik, J. The Role of Dysregulated Glucose Metabolism in Epithelial Ovarian Cancer. J. Oncol. 2010, 2010, 514310. https://doi.org/10.1155/2010/514310.

Atawodi, S. E.; Atawodi, J. C.; Idakwo, P.; Pfundstein, B.; Haubner, R.; Wurtele, G.; Spiegelhalder, B.; Bartsch, H.; Owen, R. W. Evaluation of the Polyphenol Composition and Antioxidant Activity of African Variety of Dacryodes Edulis (G.Don) H.J Lam Fruit. J. Med. Food 2009, 12 (6), 1321–1325. https://doi.org/10.1089/jmf.2008.0215.

Mohebbati, R.; Anaeigoudari, A.; Khazdair, M. R. The Effects of Curcuma Longa and Curcumin on Reproductive Systems. Endocr. Regul. 2017, 51 (4), 220–228. https://doi.org/10.1515/enr-2017-0024.

Thomas, R.; Al-Khadairi, G.; Roelands, J.; Hendrickx, W.; Dermime, S.; Bedognetti, D.; Decock, J. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front. Immunol. 2018, 9. https://doi.org/10.3389/fimmu.2018.00947.

Dall’Acqua, A.; Bartoletti, M.; Masoudi-Khoram, N.; Sorio, R.; Puglisi, F.; Belletti, B.; Baldassarre, G. Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives. Cancers (Basel) 2021, 13 (12), 3035. https://doi.org/10.3390/cancers13123035.

Burman, C.; Ktistakis, N. T. Regulation of Autophagy by Phosphatidylinositol 3-Phosphate. FEBS Lett. 2010, 584 (7), 1302–1312. https://doi.org/10.1016/j.febslet.2010.01.011.

Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M. E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S. N.; Barrera, J. L.; Mohar, A.; Verástegui, E.; Zlotnik, A. Involvement of Chemokine Receptors in Breast Cancer Metastasis. Nature 2001, 410 (6824), 50–56. https://doi.org/10.1038/35065016.

Psyrri, A.; Kountourakis, P.; Yu, Z.; Papadimitriou, C.; Markakis, S.; Camp, R. L.; Economopoulos, T.; Dimopoulos, M. A. Analysis of P53 Protein Expression Levels on Ovarian Cancer Tissue Microarray Using Automated Quantitative Analysis Elucidates Prognostic Patient Subsets. Ann. Oncol. 2007, 18 (4), 709–715. https://doi.org/10.1093/annonc/mdl479.

Binju, M.; Amaya-Padilla, M. A.; Wan, G.; Gunosewoyo, H.; Suryo Rahmanto, Y.; Yu, Y. Therapeutic Inducers of Apoptosis in Ovarian Cancer. Cancers (Basel) 2019, 11 (11), 1786. https://doi.org/10.3390/cancers11111786.




DOI: https://doi.org/10.37628/ijan.v9i1.1000

Refbacks

  • There are currently no refbacks.