Carbon Dioxide (CO2) Reduction with Borohydrides (BH4–): A Sustainable Route for CO2 Utilization†
Abstract
Full Text:
PDFReferences
Knopf I, Cummins CC. Revisiting CO2 Reduction with NaBH4 under Aprotic Conditions: Synthesis and Characterization of Sodium Triformatoborohydride, Organometallics. 2015; 34(9):1601–03p.
Pulidindi IN, Gedanken A. Can Biofuels Alleviate the Energy and Environmental Crisis? Book, Nova Science Publishers, Inc., 2019, New York, ISBN: 978-1-53615-050-6.
Reske R, Mistry H, Behafarid F, et al. Particle Size Effects in the Catalytic Electroreduction of CO2 on Cu Nanoparticles. J. Am. Chem. Soc. 2014; 136:6978−86p.
Pulidindi IN, Kimchi BB, Gedanken A. Selective chemical reduction of carbon dioxide to formate using microwave irradiation. J CO2 Util. 2014; 7:19–22p.
Fletcher C, Jiang YJ, Amal R. Production of formic acid from CO2 reduction by means of potassium borohydride at ambient conditions. Chem. Eng. Sci. 2015; 137:301–07p.
Grice KA. Groenenboom MC, Manuel JDA, et al. Examining the selectivity of borohydride for carbon dioxide and bicarbonate reduction in protic conditions, Fuel. 2015; 150:139–45p.
Zhao Y, Zhang ZL. Thermodynamic Properties of CO2 Conversion by Sodium Borohydride. Chem. Eng. Technol. 2015; 38 (1):110–16p.
Zhao Y, Qian XF, Zhao XC, et al. Hydrogenation of carbon dioxide under atmospheric pressure and low temperature, International journal of hydrogen energy. 2018; 43 (5):3062–69p.
Zhao Y, Wang TH, Wang XH, et al CO2 hydrogenation to formate over nano-scale zero-valent nickel catalyst under atmospheric pressure. Chem. Eng. J. 2018; 347:860–69p.
Zhu W, Zhao J, Wang L, et al. Mechanochemical reactions of alkali borohydride with CO2 under ambient temperature. J. Solid State Chem. 2019; 277: 828–32p.
Jeong S, Milner PJ, Wan LF, et al. Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride. Adv. Mater. 2019; 31(44):1904252.
Lombardo L, Yang H, Zhao K, et al. Solvent- and Catalyst-Free Carbon Dioxide Capture and Reduction to Formate with Borohydride Ionic Liquid. ChemSusChem. 2020; 13 (8):2025–31p.
Kadota K, Sivaniah E, Horike S. Reactivity of borohydride incorporated in coordination polymers toward carbon dioxide. Chem. Commun. 2020; 56 (38):5111–14p.
Uranga JG, Gopakumar A, Pfister T, et al., Methanol production from CO2 via an integrated, formamide-assisted approach. Sustain energy fuels. 2020: 4 (4): 1773–9p.
Zhao Y, Wang TH, Wang YB, et al. Simultaneous absorption and hydrogenation of CO2 from flue gas by KBH4 catalyzed by nickel nanoparticles supported on TiO2. Chem. Eng. J. 2020; 380:122523.
Lombardo L, Ko Y, Zhao K, et al. Direct CO2 Capture and Reduction to High-End Chemicals with Tetraalkylammonium Borohydrides. Angew. Chem. Int Ed. 2021; 60 (17): 9580–9p.
Ayyappan R, Coppel Y, Vendier L, et al. Synthesis and reactivity of phosphine borohydride compounds. Chem. Commun. 2021; 57(3):375–8p.
Coskuner O, Castilla-Martinez CA, Sonzogni O, et al. Sodium borohydride hydrolysis-mediated hydrogenation of carbon dioxide, towards a two- step production of formic acid. Int. J. hydrogen energy. 2022; 47 (62): 26490–500p.
Qu ZW, Zhu H, Streubel R, et al. Catalyst-free CO2 hydrogenation with BH3NH3 in water: DFT mechanistic insights. Phys. Chem. Chem. Phys. 2022; 24 (23): 14159–64p.
Bai ST, Smet GD, Liao YH, et al. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chem. Soc. Rev. 2021; 50: 4259–98p.
Jessop PG, Ikariya T, Noyori R. Homogeneous Hydrogenation of Carbon Dioxide. Chem. Rev. 1995; 95 (2):260-72p.
Sabet-Sarvestani H, Eshghi H, Izadyar M, et al. Borohydride salts as high efficiency reducing reagents for carbon dioxide transformation to methanol: Theoretical approach, Int. J. hydrogen energy. 2016; 41 (6): 11131–40p.
Picasso CV, Safin DA, Dovgaliuk I, et al. Reduction of CO2 with KBH4 in solvent-free conditions. Int. J. hydrogen energy. 2016; 41(32):14377-386p.
Ayodele OB. Rational design of zeolite Y supported oxalate and borohydride ligands functionalized Cu catalysts for CO2 conversion to specialty chemicals. Appl. Catal. B: Environ. 2022; 312:121381.
Guo Z, Zhang B, Wei X, et al. 1,4-Dioxane-Tuned Catalyst-Free Methylation of Amines by CO2 and NaBH4. ChemSusChem. 2018; 11(14):2296–9p.
Petersen AR, Lauridsen JM, Lee JW. CO2‐Controlled Reductive Amination Reactions with NaBH4. Eur. J. Org. Chem. 2020; (47):7368–72p.
Pąchalska P, Skarżyńska A, Matias IAS, et al. Borohydride Ionic Liquids as Reductants of CO2 in the Selective N-formylation of Amines. ChemSusChem. 2024; 17 (7); e202301120.
Wang JH, Wang BL, Wei XH, et al. One-pot two-step reduction of CO2 with amines and NaBH4 to N-substituted compounds at atmospheric pressure. J CO2 Util. 2024; 82:102741.
Guo ZQ, Yang BR, Xi CJ. Recent Advances in Reductive Functionalization of Carbon Dioxide with Borohydride Reagents. Chem. J. Chinese Universities. 2022; 43 (7): 20220199.
Fujiwara K, Yasuda S, Mizuta T. Reduction of CO2 to Trimethoxyboroxine with BH3 in THF. Organometallics. 2014; 33:6692−5p.
Zhang B, Fan ZN, Guo ZQ, et al. Reduction of CO2 with NaBH4/I2 for the Conversion of Thiophenols to Aryl Methyl Sulfides. J. Org. Chem. 2019; 84:8661−7p.
Guo ZQ, Zhang B, Wei XH. Reduction of CO2 into Methylene Coupled with the Formation of C−S Bonds under NaBH4/I2 System. Org. Lett. 2018; 20:6678−81p.
Lombardo L, Yang HN, Horike S, et al. Complex hydrides for CO2 reduction. MRS Bulletin. 2022; 47(4):424-31p.
Zhao J, Teng YL, Dong BX. Thermal Reduction of CO2 with Activated Alkali Metal Aluminum Hydrides for Selective Methanation. Energy Fuels. 2000; 34 (9):11210–11218.
DOI: https://doi.org/10.37628/ijem.v9i2.1066
Refbacks
- There are currently no refbacks.