Open Access Open Access  Restricted Access Subscription or Fee Access

APPLICATIONS OF NANO TECHNOLOGY IN ENERGY SECTOR

Aqsa Tehseen, Tahir Iqbal, Anam Mehmood, Almas Bashir

Abstract


Energy is necessary for all human activity. It is the need of the hour .Now more effective methods are used for energy production such as Nano based technology. In the present era the energy consumption is more than energy production from the different sources. The use of nanotechnology is better to get higher efficiency. It is Eco-energy so there are minimum chances of environmental destruction. The property of material is changed at Nano scale which is very useful for the production of renewable energy. The application of nanotechnology involves fuel cells, lithium-ion batteries, LED, solar cells and grätzel cells. Nanotechnology based energy have the lowest cost production but higher in efficiency. It is the need of hour to utilize this technology for the benefit of human being because the 20% of world’s population is suffering from energy problem. It can be solved by Nano based techniques therefore it should be given priority in energy sector. Keywords Nanotechnology, Lithium ion batteries, Fuel Cells, Ultra capacitors, Gratzell cell

Full Text:

PDF

References


Aguirre, C., Auvray, S., Pigeon, S., Izquierdo, R., Desjardins, P., & Martel, R. (2006). Carbon nanotube sheets as electrodes in organic light-emitting diodes. Applied Physics Letters, 88(18), 183104.

Antolini, E., & Perez, J. (2011). The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures. Journal of Materials Science, 46(13), 4435-4457.

Atanasoski, R., Schmoeckel, A., O'Neill, D., Vernstrom, G., & O'Brien, D. (2011). Fuel cell catalyst. US7867648.

Baleanu, D., Güvenç, Z. B., & Machado, J. T. (2010). New trends in nanotechnology and fractional calculus applications: Springer.

Christian, F., Adityawarman, D., & Indarto, A. (2013). Application of nanotechnologies in the energy sector: A brief and short review. Frontiers in Energy, 7(1), 6-18.

Chu, K.-L., Gold, S., Subramanian, V., Lu, C., Shannon, M. A., & Masel, R. I. (2006). A nanoporous silicon membrane electrode assembly for on-chip micro fuel cell applications. Journal of Microelectromechanical systems, 15(3), 671-677.

Dai, L., Chang, D. W., Baek, J. B., & Lu, W. (2012). Carbon nanomaterials for advanced energy conversion and storage. small, 8(8), 1130-1166.

David, S. (2010). Materials For Sustainable Energy: A Collection Of Peer-reviewed Research

And Review Articles From Nature Publishing Group: World Scientific.

Diwan, M., Hanna, D., & Varma, A. (2010). Method to release hydrogen from ammonia borane for portable fuel cell applications. International Journal of Hydrogen Energy, 35(2), 577-584.

(Page 12 of 15)

Fanfair, D., Desai, S., & Kelty, C. (2007). The early history of nanotechnology. Connexions, 6, 1-15.

Faraday, M. History of Nanotechnology.

Fraunhofer, I. (2012). Produkt-Roadmap Lithium-Ionen-Batterien 2030. Fraunhofer-Institut für System-und Innovationsforschung, Karlsruhe Google Scholar.

Green, M. A. (2009). The path to 25% silicon solar cell efficiency: history of silicon cell

evolution. Progress in Photovoltaics: Research and Applications, 17(3), 183-189.

Greßler, S., & Nentwich, M. (2012). Nano and the environment–Part I: Potential environmental benefits and sustainability effects (NanoTrust Dossier No. 026en– March 2012).

Guan, J., & Liu, N. (2014). Measuring scientific research in emerging nano-energy field.

Journal of Nanoparticle Research, 16(4), 2356.

Hibino, T., Hashimoto, A., Inoue, T., Tokuno, J.-i., Yoshida, S.-i., & Sano, M. (2000). A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science, 288(5473), 2031-2033.

Ho, T. X., Kosinski, P., Hoffmann, A. C., & Vik, A. (2010). Effects of heat sources on the performance of a planar solid oxide fuel cell. International Journal of Hydrogen Energy, 35(9), 4276-4284.

Irshad, M., Siraj, K., Raza, R., Ali, A., Tiwari, P., Zhu, B., . . . Usman, A. (2016). A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Applied Sciences, 6(3), 75.

Ito, N. (2011). Electrolyte layer for fuel cell, fuel cell, and method of manufacturing electrolyte layer for fuel cell: Google Patents.

Ji, L., Lin, Z., Alcoutlabi, M., & Zhang, X. (2011). Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 4(8), 2682-2699.

Jones, R. (2009). Nanotechnology, energy and markets. Nature nanotechnology, 4(2), 75.

Jow, T., & Rice, B. M. (2012). Research@ ARL: Energy & Energetics: ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD.

Kreuchauff, F., & Teichert, N. (2014). Nanotechnology as general purpose technology:Working Paper Series in Economics, Karlsruher Institut für Technologie (KIT).

Kwak, C., AlexandrovichSerov, A., & Soon-Ki, K. (2010). Carrier for fuel cell, and catalyst, membrane-electrode assembly, and fuel cell system including the same: Google Patents.

LI, J., WU, Q., & ZHOU, G. (2013). Analysis on the measurement and evaluation of LED products’ photobiological safety. Journal of Shenzhen Institute of Information Technology, 1, 011.

(Page 13 of 15)

Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477.

Liang, S., Zhu, X., Lian, P., Yang, W., & Wang, H. (2011). Superior cycle performance of Sn@ C/graphene nanocomposite as an anode material for lithium-ion batteries. Journal of Solid State Chemistry, 184(6), 1400-1404.

Lu, J., & Wong, C. (2008). Recent advances in high-k nanocomposite materials for embedded capacitor applications.

Mabiza, J. M. (2013). Energy potential and sustainability management of platinum catalysed fuel cell technology in South Africa. University of Johannesburg.

MARSACQ, D. (2004). Les micropiles à combustible: Une nouvelle génération de microgénérateurs électriques. Clefs CEA(50-51), 94-95. Melnik, A., & Shagalina, O. (2011). History of Nanotechnology.

Miller, J. M., & Smith, R. (2003). Ultra-capacitor assisted electric drives for transportation.Paper presented at the Electric Machines and Drives Conference, 2003. IEMDC'03.IEEE International.

Nazri, G.-A., & Pistoia, G. (2008). Lithium batteries: science and technology: Springer Science & Business Media.

Nishihara, H., & Kyotani, T. (2012a). Energy Storage: Templated Nanocarbons for Energy Storage (Adv. Mater. 33/2012). Advanced Materials, 24(33), 4466-4466.

Nishihara, H., & Kyotani, T. (2012b). Templated nanocarbons for energy storage. Advanced Materials, 24(33), 4473-4498.

O'regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 353(6346), 737.

Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International journal of hydrogen energy, 35(17), 9349-9384.

Schindall, J. (2007). The charge of the ultracapacitors. IEEE Spectrum, 44(11), 42-46.

Serrano, E., Rus, G., & Garcia-Martinez, J. (2009). Nanotechnology for sustainable energy.Renewable and Sustainable Energy Reviews, 13(9), 2373-2384.

Shao, Y., Yin, G., Wang, Z., & Gao, Y. (2007). Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. Journal of Power Sources, 167(2), 235-242.

Tegart, G. (2009). Energy and nanotechnologies: Priority areas for Australia's future.Technological Forecasting and Social Change, 76(9), 1240-1246.

(Page 14 of 15)

Tolochko, N. (2009). History of nanotechnology. Nanoscience and nanotechnology. Encyclopaedia of life Support Systems (EOLSS), Developed under the auspices of the UNESCO, SEolss Published, oxford, 3-4.

Wang, Y., & Cao, G. (2009). Nanostructured materials for advanced Li-Ion rechargeable batteries. IEEE Nanotechnology Magazine, 3(2).

Wei Guo, K. (2011). Green nanotechnology of trends in future energy. Recent patents on nanotechnology, 5(2), 76-88.

Wei, T. Y., Chen, C. H., Chien, H. C., Lu, S. Y., & Hu, C. C. (2010). A cost‐effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide‐driven sol–gel process. Advanced Materials, 22(3), 347-351. Welten, P. J. M. (2016). LED based lighting application: Google Patents.

Yao, S.-C., Tang, X., Hsieh, C.-C., Alyousef, Y., Vladimer, M., Fedder, G. K., & Amon, C. H. (2006). Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy, 31(5), 636-649.

Zacharia, R., Ulbricht, H., & Hertel, T. (2004). Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Physical Review B, 69(15), 155406.


Refbacks

  • There are currently no refbacks.