Open Access Open Access  Restricted Access Subscription or Fee Access

Use of Nano-additives in Rubber Compounding: A Review

Sandeep Rai, Mahavir Kher, Akhilesh Gupta

Abstract


Rubber nanocomposites nowadays find an important position both in academic and industrial point of view and extensive research work is under way in this area. Due to their ever-growing significance of nano-additives, thorough investigation becomes necessary especially for their applications in various industries. Due to enhanced surface area and high aspect ratio of nanomaterials results in superior matrix/filler interaction and lead to superior and versatile properties in wide range of applications. Nanofillers like carbon nanotubes (CNTs), layered silicates, metal oxide, metallic nanoparticles, fullerenes silica, biomaterials polyhedral oligomeric silsesquioxane (POSS), nano-diamonds, and graphene oxide, etc. are now being used widely in rubber composites fabrication. In this review, recent advances in nanofillers and their rubber nanocomposites have been briefly reviewed. Review also reports the filler geometry and composite morphology and the composite properties. At the end, novel applications of rubber nanocomposites and the future perspectives are also discussed.

Full Text:

PDF

References


Bokobza L. Multiwall carbon nanotube elastomeric composites: A review. Polymer. 2007; 48(17): 4907–4920.

Payne AR, Whittaker RE. Low strain dynamic properties of filled rubbers. Rubber Chem. Technol. 1971; 44(2): 440–478.

Waddell WH, Beauregard PA, Evans LR. Silica properties/rubber performance correlation. Carbon black-filled rubber compounds. Tire Technol. Int. 1994; 67(2): 217–236.

Wang MJ. The role of filler networking in dynamic properties of filled rubber. Rubber Chemical Technology. 1999; 72(2): 430–448.

Pliskin I, Tokita N. Bound rubber in elastomers: Analysis of elastomer-filler interaction and its effect on viscosity and modulus of composite systems. Journal of Applied Polymer Sciences. 1972; 16(2): 473–496.

Mahavir Kher, Akhilesh Gupta, Sandeep Rai. Use of Nano-additives in Rubber Compounding: A Review. International Journal of Energetic Materials. 2021; 7(1): 40–47p.

Herrera-Alonso JM, Sedlakova Z, Marand E. Gas barrier properties of nanocomposites based on in situ polymerized poly (n-butyl methacrylate) in the presence of surface modified montmorillonite. Journal of Membrane Sciences. 2010; 349(1–2): 251–257.

Ansari S, Giannelis EP. Functionalized graphene sheet—Poly (vinylidene fluoride) conductive nanocomposites. Journal of Polymer Sciences. 2009; 47(9): 888–897.

Usuki A, Tukigase A, Kato M. Preparation and properties of EPDM-clay hybrids. Polymer. 2002; 43: 2185–2189.

Zhang LQ, Wang YZ, Wang YQ, Sui Y, Yu DS. Rubber-pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension. Composite Science and Technology. 2005; 65(7–8): 1195–1202.

De Falco A, Goyanes S, Rubiolo GH, Mondragon I, Marzocca MA. Carbon nanotubes as reinforcement of styrene–butadiene rubber. Applied Surface Science. 2007; 254(1): 262–265.

Ebbesen TW. Carbon nanotubes. Annual Review Material Sciences. 1994; 24: 235–264.

Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996; 381: 678–680.

Lian Y, Liu Y, Jiang T, Shu J, Lian H, Cao M. Control of the surface of ZnO nanostructures by selective wet-chemical etching. Journal of Physics Chemistry. 2010; 114(21): 10114–10118.

Kalaitzidou K, Fukushima H, Drzal LT. A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Composite Sciences Technology. 2007; 67(10): 2045–2051.

Joshi M, Butolaa BS. Ultraviolet high-transmitting cross-linked polymer materials derived from mercaptopropyl polyhedral oligomeric silsesquioxanes. Journal of Macromolecule Sciences. Part C: Polymers Review. 2005; 44(4): 389–410.

Li G, Wang L, Ni Jr, H. Polyhedral Oligomeric Silsesquioxane (POSS) polymers and copolymers: A review. Journal of Inorganic and Organometallic Polymers. 2001; 11(3): 123–154.

Xanthos M. Polymers and polymer composites. Edition 9–14. Functional fillers for plastics, second, updated and enlarged. Weinheim: Wiley VCH Verlag GmbH & Co; 2010.

Kumar AP, Depan D, Tomer NS, Singh RP. Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Progress in Polymer Sciences. 2009; 34(6): 479–515.

Rozenberg BA, Tenne R. Polymer-assisted fabrication of nanoparticles and nanocomposites. Progress in Polymer Science. 2008; 33(1): 40–112.

Giannelis EP. Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Applied Organometallic Chemistry. 1998; 12: 675–680.

Zou H, Wu S, Shen J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Journal of Chemical Review. 2008; 108(9): 3893–3957.

Janotti A, Van de Walle CG. Fundamentals of zinc oxide as a semiconductor. Report on Progress in Physics. 2009; 72(12): 1–29.

Xu S, Wang ZL. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Research. 2011; 4: 1013–1098.

Henning SK. Reduced zinc loading: Using zinc mono methacrylate to activate accelerated sulphur vulcanization. Fall 172nd Technical Meeting of the Rubber Division. American Chemical Society, Cleveland, OH. Oct 2007. pp. 16–18.

Smith J. Slicing it extra thin. Next big breakthrough will be measured in billionths, not billions. Tire Review. 2005. Accessed from: http://www.tirereview.com.

Holister P, Harper TE, Vas CR. NANOTUBES white paper. CMP Científica. 2003. Accessed from: www.cmp-cientifica.com.

Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress Polymer Sciences. 2003; 28(11): 1539–1641.

Crutchley GS. (2005). Rubber composites comprising a polyhedral oligomeric silsequioxane additive. WIPO patent application WO/2006/027618. Available on: https://patentimages.storage.googleapis.com/d9/68/8d/1ee3979a7ce7fb/WO2006027618A1.pdf.

Puhala AS, Zanzig DJ, Holden BD, Maly NA. Rubber nanocomposites: Latest trends and concepts. (2005). US Patent 6852794. Available on: https://pubchem.ncbi.nlm.nih.gov/patent/US-6852794-B2.

Chandra AK. Tire technology—recent advances and future trends. In: Bhowmick AK. (editor) Current Topics in Elastomers Research. New York: CRC Press; 2008. pp. 919–933.

Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C. The use of cellulose nanofillers in obtaining polymer nanocomposites: Properties, processing, and applications. Polymer Advanced Technology. 1995; 6: 351–355.

Favier V, Cavaille JY, Chanzy H. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Macromolecules. 1995; 28: 63–65.

Helbert W, Cavaille JY, Dufresne A. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behaviour. Polymer Composite. 1996; 17(4): 604–611.

Dufresne A, Cavaille JY, Helbert W. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: Effect of processing and modelling. Polymer Composite. 1997; 18(2): 198–210.

Favier V, Canova GR, Shrivastava SC, Cavaille JY. Mechanical percolation in cellulose whisker nanocomposites. Polymer Engineering and Science. 1997; 37(10): 1732–1739.

Chazeau L, Paillet M, Cavaille JY. Plasticized PVC reinforced with cellulose whiskers. I. Linear viscoelastic behaviour analysed through the quasi-point defect theory. Journal of Polymer Sciences, Part B, Polymer Physics.1999; 37(16): 2151–2164.

Dubief D, Samain E, Dufresne A. Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate). Nanocomposite Materials Macromolecules. 1999; 32(18): 5765–5771.

Dufresne A, Kellerhals MB, Witholt B. Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules. 1999; 32(22): 7396–7401.

Dufresne A. Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Composite Interfaces. 2000; 7(1): 53–67.

Anglès MN, Dufresne A. Plasticized starch/tunicin whiskers nanocomposites. 1. Structural Analysis. Macromolecules. 2000; 33: 8344–8353.

Anglès MN, Dufresne A. Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules. 2001; 34: 2921.

Mathew AP, Dufresne A. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules. 2002; 3(3): 609–617.

Siqueira G, Bras J, Dufresne A. Cellulosic bio nanocomposites: A review of preparation, properties and applications. Polymers. 2010; 2(4): 728–765.

Kumar MNVR. A review of chitin and chitosan applications. Reactive and Functional Polymer. 2000; 46(1): 1–27.

Mishra S, Shimpi NG. Comparison of nano CaCO3 and fly ash filled with styrene butadiene rubber on mechanical and thermal properties. Journal Sci. Ind. Res. 2005; 64: 744–751.

Bhattacharya M, Bhowmick AK. Synergy in carbon black-filled natural rubber nanocomposites. Part I: Mechanical, dynamic mechanical properties, and morphology. Journal Material Science. 2010; 45: 6126–6138.

Xu SH, Gu J, Luo YF, Jia DM. Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites eXPRESS Polymer Letters. 2012; 6(1): 14–25.

Mouri H, Akutagawa K. Improved tire wet traction through the use of mineral fillers. Rubber Chemistry and Technology. 1999; 72: 960–968.

Meli G, Europe L, Tan A, Asia L. Nippon Gomu Kyokaishi. Rubber nanocomposites: Latest trends and concepts. J. Soc. Rubber Ind. Jpn. 2006; 79: 160.

Pinho MS, Gorelova MM, Dezzotti M, Soares BG, Pertsin AJ. Poly(acrylic acid)–poly(vinyl alcohol) copolymers with superabsorbent properties. Journal of Applied Polymer Science. 1998; 70(4): 817–829.

Faez R, De Paoli MA. Elastic polyaniline with EPDM and dodecylbenzenesulfonic acid as plasticizers. Journal of Applied Polymer Sciences. 2001; 82(7): 1768–1775.

Faez R, De Paoli MA. A conductive rubber based on EPDM and polyaniline: I. Doping method effect. European Polymer Journal. 2001; 37(6): 1139–1143.

Faez R, Gazotti WA, De Paoli MA. An elastomeric conductor based on polyaniline prepared by mechanical mixing. Polymer. 1999; 40(20): 5497–5503.

Tsanov T, Ditcheva-Kortchakova M, Terlmezyan L. Polymer and Polymer Composite. 2000; 8 : 115.

Faez R, Schuster RH, De Paoli MA. A conductive elastomer based on EPDM and polyaniline: II. Effect of the crosslinking method. European Polymer Journal. 2002; 38(12): 2459–2463.

Schmidt V, Domenech SC, Soldi MS, Pinheiro EA, Soldi V. Spectroscopy analyses of polyurethane/polyaniline IPN using computational simulation (Amber, MM+ and PM3 method. Polymeros Degrad. 2014; 24(4).

Vallim MR, Felisberti MI, De Paoli MA. Blends of polyaniline with nitrilic rubber. Journal of Applied Polymer Science. 2000; 75(5): 677–684.


Refbacks

  • There are currently no refbacks.