Open Access Open Access  Restricted Access Subscription or Fee Access

Chemometrics Analysis based on Infrared Spectroscopy of Emu Oil Obtained by Different Solventless Methods

Ana Maria Pineda-Reyes, María R. Herrera-Rivera, S. I. Eguia-Eguia, Elvia Díaz-Valdes

Abstract


The multivariate analysis technique principal components regression (PCR) was used as a method of discrimination of the information obtained in the infrared spectra with the AssureID and Spectrum QUANT+ Software, to predict structural changes in emu oil extracted by solventless methods. A set of 20 spectra per sample for each extraction method was used, incorporating the spectral information in the calibration of the chemometric analysis. Variations in the spectra were found around 2960–2830 cm-1 due to the vibration of cis and trans double bonds; at 1750–1650 cm-1 due to the C=O bond of the ester, as well as variations in the fingerprint region at 1423–957 cm-1. These variations correlate with changes in the molecular structure of emu oil due to the extraction method. The PCR algorithm used in the regression of the set of spectra of the samples, predicted variations between the extraction methods. The Soft Independent Modeling of Class Analogies (SIMCA) statistical model, which uses the AssureID, allowed observing a separation between the types of methods used through distances obtained by the set of spectra of each method, which were greater than 3 main components, indicated as a rule by the SIMCA model. The chemometric model developed with the PCR algorithm made it possible to predict the existence of changes in the molecular structure of the different samples of emu oils.

Full Text:

PDF

References


M.A. Grompone, B. Irigaray, M. Gil, Composition and thermal properties of Rhea oil and its fractions, Eur J Lipid Sci Technol. 107 (2005a) 762–766. https://doi.org/10.1002/ejlt.200401120.

Y.W. Wang, H. Sunwoo, J.S. Sim, Lipid characteristics of emu meat and tissues, Food and Nutritional Science 7 (2000) 71–82. https://doi.org/10.1111/j.1745-4522.2000.tb00162.x.

M.K. Jeengar, P.S. Kumar, D. Thummuri, S. Shrivastava, L. Guntuku, R. Sistla, V.G.M. Naidu, Review on emu products for use as complementary and alternative medicine, Nutrition, 31 (2015) 21–27. https://doi.org/10.1016/j.nut.2014.04.004.

J.M. Snowden, M.W. Whitehouse, Anti-inflammatory activity of emu oils an rats, Inflammopharmacology 5 (1997) 127–132. https://doi.org/10.1007/s40011-015-0564-3.

Vahedian V, Asadi A, Esmaeili P, Zamani S, Zamani R, Hajazimian S, Isazadeh A, Shanehbandi D, Maroufi NF. Anti-inflammatory activity of emu oil-based nanofibrous scaffold through downregulation of IL-1, IL-6, and TNF-α pro-inflammatory cytokines. Hormone molecular biology and clinical investigation. 2020 Jun 1;41(2).https://doi.org/10.1515/hmbci-2019-0052.

Sundralingam U, Chakravarthi S, Radhakrishnan AK, Muniyandy S, Palanisamy UD. Efficacy of emu oil transfersomes for local transdermal delivery of 4-OH tamoxifen in the treatment of breast cancer. Pharmaceutics. 2020 Aug 25;12(9):807.

Belton P. The functional properties of fats and oils-A richness of diversity. Grasas y aceites. 2000 Apr 30;51(1-2):1-5.

H. Vardin, A. Tay, B. Ozen, L. Mauer, Authentication of pomegranate juice concentrate using FTIR spectroscopy and chemometrics, Food Chemistry 108 (2008) 742–748. https://doi.org/

1016/j.foodchem.2007.11.027.

R. Velasco, H. Villada, J. Carrera, Aplicaciones de los fluidos supercríticos en la agroindustria, Información Tecnológica 18 (2007) 53–65. http://dx.doi.org/10.4067/S0718-07642007000100009.

Undeland et al., 1997 I. Undeland, M. Hrrod, H. Lingnerta, Comparison between methods using low-toxicity solvents for the extraction of lipids from herring (Clupea harengus), Food Chemistry 61 (1998) 355–365. https://doi.org/10.1016/S0308-8146(97)00053-8.

Shahidi F, editor. Bailey's Industrial Oil and Fat Products, Industrial and Nonedible Products from Oils and Fats. John Wiley & Sons; 2005 Apr 8.

M. Daszykowski, K. Kaczmarek, Y. Vander, B. Walczak, Robust SIMCA-bounding influence of outliers, Chemometr Intell Lab Syst. 87 (2007) 95–103. https://doi.org/10.1016/j.

chemolab.2006.10.003.

J.N. Miller, J.C. Miller, Estadística y quimiometría para química analítica, fourth ed., Madrid, 2002. ISBN: 84-205-3514-1.

V.S. Lee, P. Tue-ngeun, P. Traisathit, S. Prasitwattanaseree, P. Nimmanpipug, J. Chaijaruwanich, FTIR and chemometric tools for the classification of Thai Wines, Maejo Int. J. Sci. Technol. 3 (2009), 446–458.

U. Regmi, M. Palma, C.G. Barroso, Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques, Anal. Chim. Acta 732 (2012) 137–144. https://doi.org/10.1016/j.aca.2011.11.009.

M. El Mouftari, F.Z. Mahjoubi, F. Kzaiber, W. Terouzi, G.A.M. Ali, S. Souhassou, A. Oussama, Study of Oleaster Oil’s Falsification by ATR-FTIR and Chemometrics Tools, Egypt. J. Chem. 64 (2021) 2747–2755. doi:10.21608/ejchem.2021.53644.3107. doi:10.21608/EJCHEM.2021.53644.

D. Brodnjak, Z. Cencic, K. Marjana, Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids, Chemometr Intell Lab Syst. 75 (2005) 31–43. https://doi.org/10.1016/j.chemolab.2004.04.011.

O.G. Meza, T. Gallardo, G. Osorio, Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef, Meat Science 86 (2010) 511–519. https://doi.org/10.1016/j.meatsci.2010.05.044.

A.A. Christy, P.K. Egeberg, Quantitative determination of saturated and unsaturated fatty acids in edible oils by infrared spectroscopy and chemometrics, Chemometr Intell Lab Syst. 82 (2006) 130–136. https://doi.org/10.1016/j.chemolab.2005.06.019.

R.G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant, England, 2003. ISBN: 0-471-48977-8.

G.R. Flaten, B. Grung, O.M. Kvalheim, A method for validation of reference sets in SIMCA modeling, Chemometr Intell Lab Syst. 72 (2004) 101–109. https://doi.org/10.1016/j.

chemolab.2004.03.003.

Jamwal R, Kumari S, Balan B, Kelly S, Cannavan A, Singh DK. Rapid and non-destructive approach for the detection of fried mustard oil adulteration in pure mustard oil via ATR-FTIR spectroscopy-chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021 Jan 5;244:118822.https://doi.org/10.1016/j.saa.2020.118822.

Y. Tominaga, Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN, Chemometr Intell Lab Syst. 49 (1999) 105–115. https://doi.org/10.1016/S0169-7439(99)00034-9.

M. Hernández, T. Gallardo, G. Osorio, Rapid characterization and identification of fatty acids in margarines using horizontal attenuate total reflectance Fourier transform infrared spectroscopy (HATR-FTIR), Eur. Food Res. Technol. 231 (2010) 321–329. https://doi.org/10.1007/s00217-010-1284-9.

L.L. Méndez, A.M. Pineda-Reyes, L.R. Hernández, J. Rodríguez, Evaluation of emu oil extraction methods and their effects on physical and rheological behavior, Eur. J. Lipid Sci. Technol 113 (2010) 780–785. https://doi.org/10.1002/ejlt.201000498.

Paré JR, Bélanger JM. Electroanalytical Techniques: Principles and Applications. Instrumental Methods in Food Analysis. 1997 Mar 14:267.https://buscaenbuja.ujaen.es/permalink/34CBUA_

UJA/1a1rl88/alma991001599779704994

J.H. Castorena-García, M. Rojas-López, R, Delegado-Macuil, R.R. Robles de la Torre, Análisis de Pulpa y Aceite de Aguacate con Espectroscopia Infrarroja, Conciencia Tecnológica 42 (2011) 5-10. https://www.redalyc.org/pdf/944/94421442002.pdf.

H. Yang, J. Irudayaraj, M. Paradkar, Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT Raman spectroscopy, Food Chem. 93 (2005) 25–32. https://doi.org/10.1016/j.

foodchem.2004.08.039.

N. Sinelli, L. Cerretani, V. Di Egidio, A. Bendini, E. Casiraghi, Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity, Food Research International 43 (2010) 369–375. https://doi.org/

1016/j.foodres.2009.10.008.

R. Silverstein, F. Webster, D. Kiemle, Spectrometric identification of organic compounds, 7th ed., New York, 2005. ISBN 0-471-39362-2.

M.J. Lerma, G. Ramis, J.M. Herrero & E.F. Simón, Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy, Food Chem. 118 (2010) 78–83. https://doi.org/10.1016/j.

foodchem.2009.04.092.




DOI: https://doi.org/10.37628/ijn.v8i2.952

Refbacks

  • There are currently no refbacks.