Open Access Open Access  Restricted Access Subscription or Fee Access

Graphene Thin Film: Proposing as Active Layer in Solar Cells

Abhinav Gondhi

Abstract


Solar cells are the need of today’s world due to its different advantages like renewable energy source, no toxic gases produce, i.e. environment friendly, etc. To synthesize and enhance the performance of solar cells, various different technologies are used. Different materials and different structures are used by the researcher to improve the solar cell technology. Research works give more attention towards this, because this technology opens up the new window in the field of energy harvesting. Different materials are used to manufacture the solar cell. Due to limitation of that material, new research is going on to find the suitable material which enhances the solar cell performance. Graphene is the newly found material on which research is going on because graphene fulfils the requirement of solar cells like high conductivity, high transparency and low processing cost.

Keywords


Graphene, thin film, solar cell, graphene oxide

Full Text:

PDF

References


http://www.chemistryexplained.com/RuSp/Solar Cells.

M. Bagher, M. M. A. Vahid, M. Mohsen. Types of solar cells and application. American Journal of Optics and Photonics. 2015; 3: 94--113p.

K. Chopra, P. Paulson, V. Dutta. Thin-film solar cells: A review, Progress in Photovoltaics: Research and Applications. 2004; 12: 69--92p.

P. C. Choubey, A. Oudhia, R. Dewangan. A review: Solar cell current scenario and future trends, Recent Research in Science and Technology. 2012; 4(8): 99--101p.

S. Sharma, K. K. Jain, A. Sharma. Solar cells: In research and applications -- a review, Materials Sciences and Applications. 2015; 6(12): 1145p.

http://www.theochem.kth.se/people/su/twophoton.jpg

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan. Intermediate band solar cells: Recent progress and future directions, Applied Physics Reviews. 2015; 2(2): 021302p.

http://org.ntnu.no/solarcells/pics/chap5/junction1.png

W. Ruppel, P. Wurfel. Upper limit for the conversion of solar energy, IEEE Transactions on Electron Devices. 1980; 27: 877–82p.

J. Nelson. The Physics of Solar Cells. London: Imperial College Press; 2003, 7–15p.

http://www.explainthatstuff.com/solarcells.html

K. P. Loh, S. W. Tong, J. Wu. Graphene and graphene-like molecules: prospects in solar cells, Journal of the American Chemical Society. 2016; 138(4): 1095--102p.

N. Tiwari, G. Krypunov, F. Kurdesau, D. L. Bätzner, A. Romeo, H. Zogg. CdTe solar cells in a novel configuration, Progress in Photovoltaics. 2004; 12: 33--8p.

D. L. Pulfrey. MIS solar cells. A review, IEEE Transactions on Electron Devices. 1978; 25(11): 1308–17p.

Luque, A. Martí. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Physical Review Letters. 1997; 78(26): 5014–7p.

G. Fan, H. Zhu, K. Wang, J. Wei, X. Li, Q. Shu, N. Guo, D. Wu. Graphene/silicon nanowire Schottky junction for enhanced light harvesting, ACS Applied Materials & Interfaces. 2011; 3(3): 721–5p.

C. Wadia, A. P. Alivisatos, D. M. Kammen. Materials availability expands the opportunity for large-scale photovoltaics deployment, Environmental Science & Technology. 2009; 43: 2072–7p.

E. H. Sargent. Colloidal quantum dot solar cells, Nature Photonics. 2012; 6(3): 133p.

http://www.nrel.gov/ncpv/images/ efficiency_chart.jpg.

R. W. Miles. Choice of materials and production methods, Vacuum. 2006; 80: 1090–97p.

X. Yan, W. Li, A. G. Aberle, S. Venkataraj. Investigation of the thickness effect on material and surface texturing properties of sputtered ZnO: Al films for thin-film Si solar cell applications, Vacuum. 2016; 123: 151--9p.

U. S. Tolcin. Indium: U. S. Geological Survey Mineral Commodity Summaries. 2013.

H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç. Transparent conducting oxides for electrode applications in light emitting and absorbing devices, Superlattices and Microstructure.2010; 48: 458–84p.

T. Dimopoulos, G. Z. Radnoczi, Z. E. Horváth, H. Brückl. Thin Solid Films. 2012; 520(16): 5222--6p.

S. M. Kim, Y. S. Rim, M. J. Keum, K.‐H. J. Kim. Electroceramics. 2008; 23: 341–5p.

B. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds. PEDOT and its derivatives: Past, present, and future, Advanced Materials. 2000; 7: 481--94p.

P. Kopola, T. Aernouts, S. Guillerez, H. Jin, M. Tuomikoski, A. Maaninen, J. Hast. High efficient plastic solar cells fabricated with a high-throughput gravure printing method. Solar Energy Materials and Solar Cells. 2010; 94(10): 1673--80.

S. E. Hosseini, A. M. Andwari, M. A. Wahid, G. Bagheri. A review on green energy potentials in Iran, Renewable and Sustainable Energy Reviews. 2013; 27: 533--45p.

Y. Zhang, T.-T. Tang, C. Giri, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang. Direct observation of a widely tunable bandgap in bilayer graphene, Nature. 2009; 459(7248): 820–3p.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films, Science. 2004; 306: 666–9p.

J.-K. Chang, W.-H. Lin, J.-I. Taur, T.-H. Chen, G.-K. Liao, T.-W. Pi, M.-H. Chen, C.-I. Wu. Graphene anodes and cathodes: Tuning the work function of graphene by nearly 2 eV with an aqueous intercalation process, ACS Applied Materials & Interfaces. 2015; 7(31): 17155--61p.

https://tse2.mm.bing.net/th?id=OIP.M9b4651c79055c491ab8b806d145bff69o0&pid=15.1&P=0&w=339&h=168.

T. Minami. Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology. 2005; 20(4): S35p.

http://www.graphenea.com/pages/graphene-properties#.V4M1rdR97Gg

Hamberg, C. G. Granqvist. Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows, Journal of Applied Physics. 1986; 60: R123–60p.

H. Park, P. R. Brown, V. Bulović, J. Kong. Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes, Nano Letters. 2011; 12(1): 133--40p.

Y. Y. Choi, S. J. Kang, H. K. Kim, W. M. Choi, S. I. Na. Multilayer graphene films as transparent electrodes for organic photovoltaic devices, Solar Energy Materials and Solar Cells. 2012; 96: 281--5p.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology. 2010; 5(8): 574--8p.

H. Wang, T. Maiyalagan, X. Wang. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications, ACS Catalysis. 2012; 2(5): 781--94p.

M. Choe, B. H. Lee, G. Jo, J. Park, W. Park, S. Lee, W.-K. Hong, M. J. Seong, Y. H. Kahng, K. Lee, T. Lee. Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes, Organic Electronics. 2010; 11(11): 1864--9p.

Wan, F. Gu, W. Bao, J. Dai, F. Shen, W. Luo, X. Han, D. Urban, L. Hu. Sodium-ion intercalated transparent conductors with printed reduced graphene oxide networks, Nano Letters. 2015; 15(6): 3763--69.

Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Letters. 2008; 9(1): 30--5p.

S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films, Science. 2004; 306: 666--9p.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology. 2008; 3: 563--8.

S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009; 457: 706--10p.

Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, Y. Chen. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property, Advanced Materials. 2009; 21: 1275--9p.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer. Electronic confinement and coherence in patterned epitaxial graphene, Science. 2006; 312: 1191--6p.

Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H. W. Kroto. The production and structure of pyrolytic carbon nanotubes, Journal of Physics and Chemistry of Solids. 1993; 54: 1841–48p.

S. Malik, C. C. Tripathi. Thin film deposition by Langmuir Blodgett technique for gas sensing applications, Journal of Surface Engineered Materials and Advanced Technology. 2013; 3(3): 235p.

www.tf.uni-kiel.de/matwis/amat/elma

t_en/kap_6/backbone/r6_4_1.

Neogi, S. Karna, R. Shah, U. Phillipose, J. Perez, R. Shimada, Z. M. Wang. Surface plasmon enhancement of broadband photoluminescence emission from graphene oxide, Nanoscale. 2014; 6(19): 11310--5p.

S. Kim, X. Wang, J. H. Yim, W. C. Tsoi, J. Kim, S. Lee. Journal of Photonics for Energy. 2012; 2(1): 021010--1p.

www.ossila.com/pages/spin-coating

Q. Wang, H. Moriyama. Carbon nanotube-based thin films: Synthesis and properties. In: Carbon Nanotubes-Synthesis, Characterization, Applications. InTech; 2011.


Refbacks

  • There are currently no refbacks.