Open Access Open Access  Restricted Access Subscription or Fee Access

A review on Hydroxyapatite: Synthesis methodologies and potential application

Md. Masud Rana, Naznin Akhtar, S. M. Asaduzzaman

Abstract


Hydroxyapatite (HAp), chemically related to the inorganic component of bone matrix has a complex structure with the formula of Ca10 (OH) 2(PO4)6, is one of the cheapest and well known ceramics for diversified applications including tissue reconstructionmainly in orthopedics and dentistry, tissue engineering scaffold fabrication,coating medical implants, carrier for plasmid DNA in gene delivery,carriers for anticancer drugs,adsorbent material for the removal of environmental pollutants etc. Over the past decade, HAp nanoparticles have therefore increasingly been in demand, and extensive efforts have been devoted to develop many synthetic routes from chemical or natural sources, involving both scientifically and economically new features. This review discusses current state of knowledge and recent developments of Hap from biogenic&chemicalsources and different clinical and non-clinical applications of HAp are also illustrated.

Full Text:

PDF

References


Alis Yovana Pataquiva-Mateus, María Pia Ferraz, Fernando Jorge Monteiro; Nanoparticles of hydroxyapatite: preparation, characterization and cellular approach - An Overview; MUTIS, Journal of the Faculty of Sciences and Engineering, Jorge Tadeo Lozano University, vol 3 (2) pag. 43-57,2013.

Son JS, Appleford M, Ong JL, Wenke JC, Kim JM, et al. (2011) Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. J Controlled Release 153: 133-140.

Kang M-H, Jung H-D, Kim S-W, Lee S-M, Kim H-E, et al. (2013) Production and bio-corrosion resistance of porous magnesium with hydroxyapatite coating for biomedical applications. Mater Lett 108: 122-124.

Orlovskii V, Komlev V, Barinov S (2002) Hydroxyapatite and Hydroxyapatite- Based Ceramics. Inorg Mater 38: 973-984.

Kanno CM, Sanders R, Flynn SM, Lessard G, Myneni S (2014) Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro crystalline hydroxyapatite-coated-limestone. Environ Sci Technol (In Press) 48: 5798-5807.

Cummings L (2013) Hydroxyapatite chromatography: purification strategies for recombinant proteins. Methods Enzymol 541: 67-83.

W. Weng, G. Shen, G. Han, 2000, “Low temperature preparation of hydroxyapatite coatings on titanium alloy by a sol-gel route”, Materials Science Letters, Vol. 19, pp. 2187- 2188.

K. Cheng, W. Weng, G. Han, P. Du, G. Shen, J. Yang, J.M.F. Ferreira, 2003, “The effect of triethanolamine on the formation of sol–gel derived fluoroapatite/hydroxyapatite solid solution”, Journal of Materials Chemistry and Physics, Vol. 78, pp. 767-771.

R.E. Riman, W.L. Suchanek, K. Byraopa, C-W. Chen, P. Shuk, C.S. Oakes, 2002, “Solution synthesis of hydroxyapatite designer particulates”, Solid State Ionics, Vol. 151, pp. 393- 402.

L-Y. Huang, K-W. Xu, J. Lu, 2000, “A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings”, Journal of Materials Science: Materials in Medicine, Vol. 11, pp. 667-673.

W. Weng, S. Zhang, K. Cheng, H. Qu, P. Du, G. Shen, J. Yuan, G. Han, 2003, “Sol–gel preparation of bioactive apatite films”, Surface and Coatings Technology, Vol. 167, pp. 292-296.

W. Weng, G. Han, P. Du, G. Shen, 2002, “The effect of citric acid addition on the formation of sol–gel derived hydroxyapatite”, Materials Chemistry and Physics, Vol. 74, pp. 92-97.

D. Choi, K. Marra, P.N. Kumta, 2004, “Chemical synthesis of hydroxyapatite/poly (caprolactone) composite”, Materials Research Bulletin, Vol. 39, pp. 417-432.

W. Weng, J.L. Baptista, 1998, “Alkoxide route for preparing hydroxyapatite and its coatings”, Biomaterials, Vol. 19, pp. 125-131.

K. Cheng, W. Weng, G. Han, P. Du, G. Shen, J. Yang, J.M.F. Ferreira, 2003, “Sol–gel

derived fluoridated hydroxyapatite films”, Materials Research Bulletin, Vol. 38, pp. 89-97

.

K. Cheng, G. Shen, W. Weng, G. Han, J.M.F. Ferreira, J. Yang, 2001, “Synthesis of hydroxyapatite /fluoroapatite solid solution by a sol-gel method”, Materials Letters, Vol. 51, pp. 37- 41.

W. Weng, G. Han, P. Du, G. Shen, J. Yang, 2002, “The effect of citric acid addition on sol–gel preparation of apatite films”, Materials Chemistry and Physics, Vol. 77, pp. 578-582.

.Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7: 2769-2781.

Danoux CB, Barbieri D, Yuan H, de Bruijn JD, van Blitterswijk CA, et al. (2014) In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter 4: e27664.

Kobayashi S, Murakoshi T (2014) Characterization of mechanical properties and bioactivity of hydroxyapatite/β-tricalcium phosphate composites. Adv Compos Mater 23: 163-177.

Sooksaen P, Jumpanoi N, Suttiphan P, Kimchaiyong E (2010) Crystallization of nano-sized hydroxyapatite via wet chemical process under strong alkaline conditions. Sci J UBU 1: 20-27.

Zyman ZZ, Rokhmistrov DV, Loza KI (2013) Determination of the Ca/P ratio in calcium phosphates during the precipitation of hydroxyapatite using X-ray diffractometry. Process and Appl Ceramics 7: 93-95.

2. Elliot, J. C. (1994). Structure and Chemistry of the apatites and other calcium orthophosphates. 18 vols. Vol. 18, Studies in Inorganic Chemistry. Amsterdam:Elsevier.

Bayraktar, D. & C. Tas. (1999). Chemical preparation of carbonated calcium hydroxyapatite powders at 37oC in urea-containing synthetic body fluids. Journal of the European Ceramic Society,19: p.2573-2579.

Hench, L. L. (1991). Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 74 (7): p.1487-1510.

Jarcho, M. (1981). Calcium phosphate ceramics as hard tissue prosthetics. Clinical Orthopaedics and Related Research, 157: p.259-278.

Ogiso, M. (1998). Reassessment of long-term use of dense HA as dental implant: case report. Journal of Biomedical Materials Research: Applied Biomaterials,43 (3): p.318-320.

Piattelli, A. & P. Trisi. (1994). A light and laser scanning microscopy study of bone/hydroxyapatite-coated titanium implants interface: histochemical evidence of unmineralized material in humans. Journal of Biomedical Materials Research, 28: p.529-536.

Uehara, T., K. Takaoka & K. Ito. (2004). Histological evidence of osseointegration in human retrieve fractured hydroxyapatite-coated screw-type implants: a case report. Clinical Oral Implants Research, 15: p.540-545.

Spanos, N., V. Deimede & P. G. Koutsoukos. (2002). Functionalization of synthetic polymers for potential use as biomaterials: selective growth of hydroxyapatite on sulphonated polysulphone. Biomaterials,23 (3): p.947-953.

Combes, C. & C. Rey. 2002. Adsorption of proteins and calcium phosphate materials bioactivity. Biomaterials, 23: p.2817-2823.

Hench, L. L. (1998). Bioceramics. Journal of American Ceramic Society, (7): p.1705-1728.

Zahouily, M., Y. Abrouki, B. Bahlaouan, A. Rayadh & S. Sebti. (2003). Hydroxyapatite: new efficient catalyst for the Michael addition. Catalysis Communications,4: p.521-524.

Kumta, Prashant N., Charles Sfeir & Dong-Hyun Lee. (2005). Nanostructured calcium phosphates forbiom edical applications: novel synthesis and characterization. Acta Biomaterialia, 1: p.65-83.

Santos MH, de Oliveira M, de Freitas Souza P, Mansur HS, Vasconcelos WL. Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Mater Res. 2004; 7(4):

-630.

. Manuel CM, Ferraz MP, Monteiro FJ. Nanoapatite and microporous structures of hydroxyapatite. Proceeding of the 17 th European Society of Biomaterials. Barcelona, Spain. 2002: T 153.

Manuel CM, Ferraz MP, Monteiro FJ. Synthesis of hydroxyapatite and tri calcium phosphate

nanoparticles. Preliminary Studies. Key Eng Mater. 2003; 240-242: 555-58.

Chang sheng Liu, Yue Huang, Wel Shen, Jinghua Cui, Kinetics of hydroxyapatite precipitation at pH10 to 11, Biomater., 22,301-306 (2001).

.Koutsopoulos, S., Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research, 2002. 62(4): p. 600-612.

Mobasherpoura, I., et al., Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds, 2007. 430(1-2): p. 330-333.

Zhang, S. M., Cui, F. Z., Liao, S. S., Zhu, Han, L., Synthesis and Characterization of porous Nanohydroxyapatite / collagen / alginate composite, J. Mater. Sci. Mater. Med., 14, 641-645 (2003).

Jianping Zhu, Deshuang Kong, Yin Zhang, Nengjian Yao, Yaqiu Tao and Tai Qiu., The Influence of Conditions on Synthesis Hydroxyapatite By Chemical Precipitation Method, Mater. Sci. Eng., 18 (2011).

Luis, C., Mendes, Geysy, L., Ribeiro, Raphaella, C., Marques., InSitu Hydroxyapatite Synthesis: Influence of Collage non Its Structural and Morphological Characteristic, Mater. Sci. Appl.,3, 580-586 (2012).

Rozita Ahmad Ramli, Rohana Adnan, Mohammad Abu Bakar and Saman Malik Masudi., Synthesis and Char acterization of Pur e Nanoporous Hydroxyapatite., J. Phys. Sci., 22(1), 20-37(2011).

Chai CS, Ben-Nissan B. Bioactive nanocrystalline sol-gel hydroxyapatite coatings. J Mater Sci: Mater Med. 1999; 10: 465-469.

Anee Kuriakosea, T., et al., Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature. Journal of Crystal Growth, 2004. 263(1-4): p. 517-523.

Khelendra Agarwal, Gurubhinder Sing, Devandra Puri, Satya Prakash, synthesis of hydroxyapatite powder by sol–gel method for biomedical application, J. Mater. Charac. Eng., 10(8), 727-734 (2011).

Manafi SA, Joughehdoust S. Synthesis of hydroxyapatite nanostructure by hydrothermal condition for biomedical application. Iranian J Pharm Sci. 2009; 5(2): 89-94.

Yoon, S.Y., et al., Synthesis of hydroxyapatite whiskers by hydrolysis of α-tricalcium phosphate using microwave heating. Materials Chemistry and Physics, 2005. 91(1): p. 48-53.

Sinitsyna, O.V., et al., Synthesis of hydroxyapatite by hydrolysis of α-Ca3(PO4)2. Russian Chemical Bulletin, 2005. 54(1): p. 79-86.

Arellano-Jiméneza, M.J., R. García-Garcíaa, and J. Reyes-Gasga, Synthesis and hydrolysis of octacalcium phosphate and its characterization by electron microscopy and X-ray diffraction. Journal of Physics and Chemistry of Solids, 2009. 70(2): p. 390-395.

Nasser, Y., Mostafa., Characterization, thermal stability and sinter ing of hydroxyapatite powders prepared by different routes, Mater. Chem. Phys., 94, 333–341 (2005).

Earl, J. S., Wood, D. S. and Milne, S. J., Hydrothermal synthesis of hydroxyapatite, J. Phys. Conference Series., 26, 268–271 (2006).

Jing Bing Liu, Xiaoyur Ye, Hao Wang, Mankang Zhu, Bo Wang, Hui Yan., The influence of pH and temper atur e on the morphology of hydroxyapatite synthesized by hydrothermal method, Ceram. Int., 29(6).,629-633 (2003).

Mehmaz Salarian, Mehran Solati Hashjin, Azadeh Govdarzi., Effectof Surfactant in formation of hydroxyapatite Nanorods under hydrothermal Condition., Iranian J. Pharm. Sci., 4(2), 157-162 (2008).

Kimura I. Synthesis of hydroxyapatite by interfacial reaction in a multiple emulsion. Res Lett Mater Sci. 2007; Article ID 71284: 1-4.

Tas AC. Synthesis of biomimetic Cahydroxyapatite powders at 37 degrees C in synthetic body fluids. Biomaterials. 2000; 21: 1429-1438.

Thamaraiselvi TV, Prabakaran K, Rajeswari S. Synthsis of hydroxyapatite that mimic bone

mineralogy. Trends Biomater Artif Org. 2006; 19(2): 81-83.

Shikhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized

electrodes. J Mater Sci: Mater Med. 1998; 9: 67-72

Sahebali Manafi, Seyed Hossein Badiee, Effect of Ultr asonicon Crystallinity of Nano-Hydroxyapatite via Wet Chemical Method, Iranian J. Pharm. Sci.,4(2), 163-168 (2008).

Gerard Eddy Pioneer, Ravi Krishna Brundavanam, Nicholas Mondinos, Zhong Tao Jiang., Synthesis and Characterization of Nano hydroxyapatite using an ultrasound assisted method, Ultrasonic Sonochemistry., 16(4), 469-474 (2009).

Kojima, Y., Kitazawa, K. and Nishimiya, N., Synthesis of Nano-sized hydroxyapatite by ultrasound irradiation, J. Phys: ConferenceSeries., 339(1) (2012).

Coa Li Yun., Zhang Chuan Bo., Huang Jianteng.,Influence of temperature, [Ca2+], Ca/Pratio and ultr asonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with an ovel ultrasonic precipitation method, Mater. Lett., 59(14-15), 1902-1906 (2005).

Tomohiro Iwasaki., Mechanochemical Synthesis of Magnetite / Hydroxyapatite Nanocomposites for Hyperthermia, Mater. Sci., 175-194 (2013).

Adzila, S., Sopyan, I. and Hamdi, M., Synthesis of Hydroxyapatite through Dry Mechanochemical Methodand Its Conversion to Dense Bodies: Preliminary Result, IFMBE Proceedings., 35, 97–101 (2011).

Radzali Othman, Azlila Zakaria., Optimization of Milling Parameters during mechanical Activation for Direct Synthesis of Hydroxyapatite, ASEAN Eng. J., 1(4), 5-11 (2011).

Yeong,K. C. B. and Wang, J., Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4, Biomater., 22, 2705-2712 (2001).

Gréta Gergely, Ferenc Wéber, István Lukács, Levente Illés, Attila, L., Tóth, Zsolt, E., Horvath, Judit Mihály, Csaba Balázsi., Nanohydroxyapatite preparation from biogenic raw materials, Cant. Eur. J. Chem., 8(2), 375-381.

Gobi, D., Indira, J., Nithiya, S., Kavitha, L., Kmchi Mudali, U. and Kanimozhi, K., Influence of surfactant concentration on nano hydroxyapatite growth, Bull. Mater. Sci., 36(5), 799–805 (2013).

Siddharthan, A., Seshadri, S. K., Sampath Kumar, T. S., Influence of microwave power on nano sized hydroxylapatite particles, Scriptamaterialia., 55(2), 175-178 (2006).

Samar, J., Kalita, Saurabh Verma., nanocrystalline hydroxyapatite bioceramic using microwave radiation: synthesis and characterization, Mater. Sci. Eng: C., 30(2), 295-303 (2010).

Ferraz M, Monteiro F, Manuel C (2004) Hydroxyapatite nanoparticles: A review of preparation methodologies. J Appl Biomater Biomech 2: 74-80.

Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9: 7591-7621.

Tas, C. A., Combustion synthesis of calcium phosphate bioceramic powders. J European Ceramic Society, 2000. 20: p. 2389-2394

Sasikumar, S., et al., Synthesis and characterisation of bioceramic calcium phosphates by rapid combustion synthesis. J Materials Science Technology, 2010. 26(12): p. 1114 – 1118

Ferraz, M.P., F.J. Monteiro, and C.M. Manuel, Hydroxyapatite nanoparticles: A review of preparation methodologies. J Appl Biomater Biomech, 2004. 2(2): p.74-80.

Cunniffe, G.M., et al., The synthesis and characterization of nanophase hydroxyapatite using a novel dispersant-aided precipitation method. Journal of Biomedical Materials Research Part A, 2010. 95A(4): p. 1142-1149.

Wang, P.P., et al., Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technology, 2010. 203(2): p. 315-321.

Bouyer, E., F. Gitzhofer, and M.I. Boulos, Morphological study of hydroxyapatite nanocrystal suspension. Journal of Materials Science-Materials in Medicine, 2000. 11(8): p. 523-531.

Kothapalli, C., et al., Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Materialia, 2004.52(19): p. 5655-5663.

Liu, D.M., T. Troczynski, and W.J. Tseng, Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials, 2001. 22(13): p. 1721-1730.

Bezzi, G., et al., A novel sol-gel technique for hydroxyapatite preparation. Materials Chemistry and Physics, 2003. 78(3): p. 816-824.

Weng, W.J., et al., The effect of citric acid addition on the formation of sol-gel derived hydroxyapatite. Materials Chemistry and Physics, 2002. 74(1): p. 92-97.

Agrawal, K., et al., Synthesis of HA by various sol-gel techniques and their comparison: a review. National Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering, 2011.

Niu, J.L., Hydrothermal synthesis of nano-crystalline hydroxyapatite. Bioceramics, Vol 19, Pts 1 and 2, 2007. 330-332: p. 247-250.

Yoshimura, M. and K. Byrappa, Hydrothermal processing of materials: past, present and future. Journal of Materials Science, 2008. 43(7): p. 2085-2103.

Chaudhry, A.A., et al., Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis. Chemical Communications, 2006(21): p. 2286-2288.

Guo, X.Y. and P. Xiao, Effects of solvents on properties of nanocrystalline hydroxyapatite produced from hydrothermal process. Journal of the European Ceramic Society, 2006. 26(15): p. 3383-3391.

Wang, Y.J., et al., Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology, 2006. 17(17): p. 4405-4412.

Zhang, S.Y., et al., Kinetic studies on the synthesis of hydroxyapatite nanowires by solvothermal methods. Australian Journal of Chemistry, 2007. 60(2): p. 99-104.

Ma, M.G. and J.F. Zhu, Solvothermal Synthesis and Characterization of Hierarchically Nanostructured Hydroxyapatite Hollow Spheres. European Journal of Inorganic Chemistry, 2009(36): p. 5522-5526.

Zhang, H. And Cooper, A. I., Synthesis and applications of emulsion-templated porous materials. Soft Matter, 2005. 1: p. 107-113

Lim, G. K., et al., Processing of hydroxyapatite via microemulsion and emulsion routes. Biometerials, 1997. 18: p. 1433 – 1439.

Yang, J. H., et al., Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion. J Biomedical Materials Research Part B, 2011. 99B(1): p. 150-157.

Rao, R.R. and T.S. Kannan, Synthesis and sintering of hydroxyapatite-zirconia composites. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2002. 20(1-2): p. 187-193.

Sasikumar, S. and Vijayaraghavan, R., Solution combustion synthesis of bioceramic calcium phosphates by single and mixed fuels – a comparative study. Ceramics International, 2008. 34: p. 1373 – 1379

Barakat NAM, Khil MS, Omran A, Sheikh FA, Kim HY. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Mater Process Tech 2009;209:3408–15.

Huang YC, Hsiao PC, Chai HJ. Hydroxyapatite extracted from fish scale: effects on MG63 osteoblast-like cells. Ceram Int 2011;37:1825–31.

Yoganand C, Selvarajan V, Goudouri O, Paraskevopoulos K, Wu J, Xue D. Preparation of bovine hydroxyapatite by transferred arc plasma. Curr Appl Phys 2011;11:702–9.

Coelho T, Nogueira E, Steimacher A, Medina A, Weinand W, Lima W, et al. Characterization of natural nanostructured hydroxyapatite obtained from the bones of Brazilian river fish. J Appl Phys 2006;100:094312.

Ruksudjarit A, Pengpat K, Rujijanagul G, Tunkasiri T. Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine

bone. Curr Appl Phys 2008;8:270–2.

Gergely G, Weber F, Lukacs I, Toth AL, Horvath ZE, Mihaly J, et al. Preparation and characterization of hydroxyapatite from eggshell. Ceram Int 2010;36:803–6.

Gergely G, Weber F, Lukacs I, Illes L, Toth AL, Horvath ZE, et al. Nanohydroxyapatite preparation from biogenic raw materials. Cent Eur J Chem 2010;8:375–81.

Zhao H, He W, Wang Y, Zhang X, Li Z, Yan S, et al. Biomineralization of large hydroxyapatite particles using ovalbumin as biosurfactant. Mater Lett 2008;62:3603–5.

Meski S, Ziani S, Khireddine H. Removal of lead ions by hydroxyapatite prepared from the egg shell. J Chem Eng Data 2010;55:3923–8.

Siva Rama Krishna D, Siddharthan A, Seshadri S, Sampath Kumar T. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J Mater Sci: Mater Med 2007;18:1735–43.

Jokanovic´ V, Izvonar D, Dramic´anin M, Jokanovic´ B,Zˇivojinovic´ V, Markovic´ D, et al. Hydrothermal synthesis and nanostructure of carbonated calcium hydroxyapatite. J Mater Sci: Mater Med 2006;17:539–46.

Lee S, Oh S. Fabrication of calcium phosphate bioceramics by using eggshell and phosphoric acid. Mater Lett 2003;57:4570–4.

Meski S, Ziani S, Khireddine H, Yataghane F, Ferguene N. Elaboration of the hydroxyapatite with different precursors and application for the retention of the lead. Water Sci Technol 2011;63:2087–96.

Boonyang U, Chaopanich P, Wongchaisuwat A, Senthongkaew P, Siripaisarnpipat S. Effect of phosphate precursor on the production of hydroxyapatite from crocodile eggshells. J Biomim Biomater Tissue Eng 2010;5:31–7.

Sudip Mondal1,2*, Biswanath Mondal1, Apurba Dey2, Sudit S. Mukhopadhyay, Studies on Processing and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes: Journal of Minerals & Materials Characterization & Engineering, Vol. 11, No.1, pp.55-67, 2012

Kim, W., Zhang, Q., and F. Saito., 2000, “Mechanochemical synthesis of hydroxyapatite from Ca(OH)2-P2O5 and CaO-Ca(OH)2-P2O5 mixtures.” J. Mater. Sci., Vol. 35, pp. 5401-5405.

Mondal, S., Mahata, S., Kundu, S., and Mondal, B., 2010, “Processing of natural resourced hydroxyapatite ceramics from fish scale.” Adv. Appl.Ceram.: Struct. Funct. Bioceram., Vol. 109, pp. 234-239.

Liao, C. J., Lin, F. H., Chen, K. S., and J. S. Sun., J.S., 1999, “Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere.” Biomaterials, Vol. 20, pp. 1807–1813.

Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater 2007;3:910–8.

Lemos A, Rocha J, Quaresma S, Kannan S, Oktar F, Agathopoulos S, et al. Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc 2006;26:3639–46.

Guo YP, Yao Y, Ning CQ, Guo YJ, Chu LF. Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method. Mater Lett 2011;65:2205–8.

Rodriguez-Lugo V, Hernandez JS, Arellano-Jimenez MJ, Hernandez-Tejeda P, Recillas-Gispert S. Characterization of hydroxyapatite by electron microscopy. Microsc Microanal 2005;11:516–23.

Felicio-Fernandes G, Laranjeira M. Calcium phosphate biomaterials from marine algae. Hydrothermal synthesis and characterisation. Quim Nova 2000;23:441–6.

Xu Y, Wang D, Yang L, Tang H. Hydrothermal conversion of coral into hydroxyapatite. Mater Charact 2001;47:83–7.

S.Santhosh1 and S.Balasivanandha Prabu; Characterization of Hydroxyapatite synthesized from Sea shells and Electrospin Coating of Hydroxyapatite for Biomedical Applications, Advanced Materials Research Vol. 584 (2012) pp 435-439.

Walsh P, Buchanan F, Dring M, Maggs C, Bell S, Walker G. Low-pressure synthesis and characterisation of hydroxyapatite derived from mineralise red algae. Chem Eng J 2008;137:173–9.

Weisenbock M, Stein E, Undt G, Ewers R, Lauer G, Turhani D. Particle size of hydroxyapatite granules calcified from red algae affects the osteogenic potential of human mesenchymal stem cells in vitro. Cells Tissues Organs 2006;182:79–88.

A.F. Lemos, J.H.G. Rocha, S.S.F. Quaresma, S. Kannan, F.N. Oktar, S. Agathopoulos and J.M.F. Ferreira, Hydroxyapatite nano-powders produced hydrothermally from nacreous material, J. Eur. Ceram. Soc. 26 (2006) 3639-3646.

Jinawath S, Polchai D, Yoshimura M. Low-temperature, hydrothermal transformation of aragonite to hydroxyapatite. Mater Sci Eng C 2002;22:35–9.

Suzuki, T., K. Ishikawa & M. Miyake. (1984). Synthetic hydroxyapatite as inorganic cation exchangers. Journal of Chemical Society, Faraday Trans. 1 , 80:p.3157-3165

Kawasaki, T., M. Niikura & Y. Kobayashi. (1990b). Fundamental study of hydroxyapatite high-performance liquid chromatography. IIª. Experimental analysis on the basis of the general theory of gradient chromatography. Journal of Chromatography, 515: p.91-123.

Akazawa, T., M. Kobayashi, M. Yoshida, K. Matsushima, H. Minoshima, H. Sugimura, T. Kanno & J. Horiuchi. (1999). Improved liquid chromatographic separation of different proteins by designing functional surfaces of cattle bone-originated apatite. Journal of Chromatography A, 862: p.217-220.

Sugiyama, Shigeru, Hinori Matsumoto, Hiromu Hayashi & John B. Moffat. (1999). Decomposition of tetrachloromethane on calcium hydroxyapatite under methane oxidation conditions. Applied Catalysis B: Environmental, 20: p.57-66.

Zahouily, M., Y. Abrouki, B. Bahlaouan, A. Rayadh & S. Sebti. (2003). Hydroxyapatite: new efficient catalyst for the Michael addition. Catalysis Communications, 4: p.521-524.

Wang, Feng, Mu-Sen Li, Yu-Peng Lu, Yong-Xin Qi, & Yu-Xian Liu. (2006). Synthesis and microstructure of hydroxyapatite nanofibers synthesized at 37ªC. Materials Chemistry and Physics, 95: p.145-149.

Wu, Hsi-Chin, Tzu-Wei Wang, Jui-Sheng Sun & Wen- Hsi Wang. (2007). A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnology, 18:p.165601-165609.

Li L, Zhu ZL, Qiu YL, Zhang H, Zhao JF.; Huan Jing Ke Xue. Adsorption of fluoride ions on a Ca-deficient hydroxyapatite; 2010 Jun;31(6):1554-9,

Nie Y1, Hu C, Kong C. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite. J Hazard Mater. 2012 Sep 30;233-234:194-9.

Sairam Sundaram C1, Viswanathan N, Meenakshi S. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite. Bioresour Technol. 2008 Nov;99(17):8226-30.

Mohamed Kemiha, Doan Pham Minh, Nathalie Lyczko, Ange Nzihou, Patrick Sharrock, M. Kemiha, D.P. Minh, N. Lyczko, A. Nzihou, P. Sharrock ,Highly Porous Calcium Hydroxyapatite-based Composites for Air Pollution Control

Stupp SI, Braun PV. Molecular manipulation of microstructures Biomaterials, ceramics, and semiconductors. Science. 1997; 277: 1242-8.http://dx.doi.org/10.1126/science.277.5330.1242

Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011: 7:2769-81.

Bose S, Dasgupta S, Tarafder S, Bandyopadhyay A. Microwave- processed nanocrystalline hydroxyapatite Simultaneous enhancement of mechanical and biological properties. Acta Biomater 2 0 1 0 ; 6 : 3 7 8 2 - 9 0 .

Lin KL, Chang JA, Lu JX, Wu W, Zeng Y. Properties of beta- Ca3(PO4)2 bioceramics prepared using nano-size powders. Ceram Int 2007; 33:979-85.

Jie W, Li Y. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. Eur Polym J .2004; 40:509-15.

Okazaki M, Ohmae H. Mechanical and biological properties of apatite composite resins. Biomaterials 1988;9:345 8.

Arcís RW, López Macipe A, Toledano M, Osorio E, Rodríguez Clemente R, Murtra J, et al. Mechanical properties of visible light cured resins reinforced with hydroxyapatite for dental restoration. Dent Mater 2002;18:49 57.

Dupraz AM, de Wijn JR, v d Meer SA, de Groot K. Characterization of silane treated hydroxyapatite powders for use as filler in biodegradable composites. J Biomed Mater Res 1996;30:231 8.

Lee JJ, Lee YK, Choi BJ, Lee JH, Choi HJ, Son HK, et al. Physical properties of resin reinforced glass ionomer cement modified with micro and nano hydroxyapatite. J Nanosci Nanotechnol 2010;10:5270 6.

B.J. Melde and A. Stein ; Periodic Macroporous Hydroxyapatite-containing Calcium Phosphates, Chem. Mater. 14 (2002) 3326.

M.-Y. Ma, Y.-J. Zhu, L. Li and S.-W. Cao ; Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery, J.Mater. Chem. 18 (2008) 2722.

F. Ye, H. Guo, H. Zhang and X. He ; Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system, Acta Biomater. 6 (2010) 2212.

B. Palazzo, M. Iafisco, M. Laforgia, N. Margiotta, G. Natile, C.L. Bianchi, D. Walsh, S. Mann and N. Roveri ; Biomimetic hydroxyapatite–drug nanocrystals as potential bone substitutes with antitumor drug delivery properties Adv. Funct.Mater. 17 (2007) 2180.

G.D. Venkatasubbu, S. Ramasamy, G.S. Avadhani, V. Ramakrishnan and J. Kumar; Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles, Powder Technol. 235 (2013) 437.

Wang KW, Zhu YJ, Chen XY, Zhai WY, Wang Q, Chen F, Chang JA, Duan YR. Flower-like hierarchically nanostructured hydroxyapatite hollow spheres facile preparation and application in anticancer drug cellular delivery. Chem-Asian J. 2010; 5: 2477-82.

Cai YR, Pan HH, Xu XR, Hu QH, Li L, Tang RK. Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres A smart and biocompatible drug release system. Chem Mater 2007; 19:3081-3.http://dx.doi.org/10.1021/cm070298t

Uskokovic V, Uskokovic DP. Nanosized hydroxyapatite and other calcium phosphates Chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B 2011; 96:152-91.

Lam AMI, Cullis PR. Calcium enhances the transfection potency of plasmid DNA-cationic liposome complexes. Bba-Biomembranes 2 0 0 0 ; 1 4 6 3 : 2 7 9 - 9 0 .

Maitra A. Calcium phosphate nanoparticles second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn. 2005; 5:893-905.

Orrantia E, Chang PL. Intracellular-Distribution of DNA Internalized through Calcium-Phosphate Precipitation. Exp Cell Res 1990; 190:170-4.

Wang KW, Zhou LZ, Sun Y, Wu GJ, Gu HC, Duan YR, Chen F, Zhu YJ. Calcium phosphate/PLGA-mPEG hybrid porous nanospheres A promising vector with ultrahigh gene loading and transfection efficiency. J Mater Chem. 2010; 20:1161-6.

Wu GJ, Zhou LZ, Wang KW, Chen F, Sun Y, Duan YR, Zhu YJ, Gu HC. Hydroxylapatite nanorods An efficient and promising carrier for gene transfection. J Colloid Interf Sci. 2010; 345: 427-32.

Shi DL. Integrated multifunctional nanosystems for medical diagnosis and treatment. Adv Funct Mater. 2009; 19:3356-73.

Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 2009; 19:1553-66.

Al-Kattan A, Dufour P, Dexpert-Ghys J, Drouet C. Preparation and physicochemical characteristics of luminescent apatite-based colloids. J Phys Chem C 2010, 114, 2918-24.

Zhang CM, Li CX, Huang SS, Hou ZY, Cheng ZY, Yang PP, Peng C, Lin J. Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials. 2010; 31: 3374-83.

Yang PP, Quan ZW, Li CX, Kang XJ, Lian HZ, Lin J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials. 2008; 29:4341-7.

Ashokan A, Menon D, Nair S, Koyakutty M. A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials. 2010; 31:2606-16.

Epple M, Neumeier M, Hails LA, Davis SA, Mann S. Synthesis of fluorescent core-shell hydroxyapatite nanoparticles. J Mater Chem. 2011; 21:1250-4.

Chen F, Huang P, Zhu YJ, Wu J, Zhang CL, Cui DX. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials. 2011; 32:9031-9.

Kester M, Heakal Y, Fox T, Sharma A, Robertson GP, Morgan T T, Altinoglu EI, Tabakovic A, Parette MR, Rouse SM, Ruiz-Velasco V, Adair JH. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett. 2008; 8: 4116-21.

Morgan TT, Muddana HS, Altinoglu EI, Rouse SM, Tabakovic A, Tabouillot T, Russin TJ, Shanmugavelandy SS, Butler PJ, Eklund PC, Yun JK, Kester M, Adair JH. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett. 2008; 8:4108-15

Altinoglu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for In Vivo imaging of human breast cancer. Acs Nano. 2008; 2:2075-84.


Refbacks

  • There are currently no refbacks.