Open Access Open Access  Restricted Access Subscription or Fee Access

Influence of Print-Parameter-Property on Tensile Strength of the 3D Materials for Biomedical Applications

Gunarajulu Renganathan, Suganya Mathialagan, Venkatesh Madhu, Suguna Lakshmi Madurai

Abstract


Acrylonitrile Butadiene Styrene (ABS) filament is used to fabricate tensile specimens considering the inbuilt printing parameters and in order to investigate the relations between the print parameters and their strength properties. Printed specimens are characterized and their strength properties is assessed performed by Finite Element Analysis (FEA). The variation in the printing parameter and its influence on the tensile behavior is found to replicate by FEA simulation. Morphological studies were also done using Scanning Electron Microscopy and Optical Microscopy to investigate the tensile fracture behaviors. This study aims to investigate the 3D Printed tensile specimens and its optimal mechanical properties. It also adds value to the researchers to fine-tune and control the properties based on the applications.


Keywords


3D printing, FDM, Tensile properties, Structural morphology, Modelling, Finite Element Analysis.

Full Text:

PDF

References


L.E. Diment, M.S. Thompson, J.H.M. Bergmann, Clinical efficacy and effectiveness of 3D printing a systematic review. BMJ Open. (2017); 7(12):

A. Yanez, A. Cuadrado, O. Martel, H. Afonso, D. Monopoli, Gyroid porous titanium structures: a versatile solution to be used as scaffolds in bone defect reconstruction, Mater. Des. (2018); 140: 21–29.

B.Q. Zhang, X. Pei, C.C. Zhou, Y.J. Fan, Q. Jiang, A. Ronca, The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction, Mater. Des. (2018);152: 30–39.

Y.S. Zhang, K. Yue, J. Aleman, K.M. Moghaddam, S.M. Bakht, J. Yang, 3D bioprinting for tissue and organ fabrication, Ann. Biomed. Eng. (2017):45(1): 148–163.

T. Xu, W. Zhao, J.-M. Zhu,M.Z. Albanna, J.J. Yoo, A. Atala, Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. (2013); 34(1): 130–139.

S.J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, Development of controlled porosity Polymer - ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C. (2003); 23(5):611–620.

A. Lanzotti, M. Grasso, G. Staiano, M. Martorelli, The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp. J.(2015); 21 (5):604–617.

R.J.A. Allen, R.S. Trask, An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robot. Addit. Manuf. (2015);8: 78–87.

D.S. Ertay, A. Yuen, Y. Altintas, Synchronized material deposition rate control with path velocity on fused deposition machines. Addit. Manuf. (2018);19; 205–213.

T. Serra, C. Capelli, R. Toumpaniari, I.R. Orriss, J.J. Leong, K. Dalgarno, Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment. Biofabrication. (2016); 8(3): 035001.

J.O. Figueroa-Cavazos, E. Flores-Villalba, J.A. Diaz-Elizondo, O.Martínez-Romero, C.A. Rodríguez, H.R. Siller, Design concepts of polycarbonate-based intervertebral lumbar cages: finite element analysis and compression testing. Appl. Bionics Biomech. (2016): 2016: 7149182.

P.I.J.M. Wuisman, T.H. Smit, Bioresorbable polymers, heading for a new generation of spinal cages. Eur. Spine J. (2006);15(2): 133–148.

L. Cao, Q. Chen, L.B. Jiang, X.F. Yin, C. Bian, H.R. Wang, Bioabsorbable selfretaining PLA/nano-sized beta-TCP cervical spine interbody fusion cage in goat models. an in vivo study.Int. J. Nanomedicine. (2017); 12(7):197–7205.

D. Rosenzweig, E. Carelli, T. Steffen, P. Jarzem, L. Haglund, 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration, Int. J. Mol. Sci. (2015);16(7): 15118-35

W. Dahake Sandeep, M. Kuthe Abhaykumar, J. Chawla, B. Mawale Mahesh, Rapid prototyping assisted fabrication of customized surgical guides in mandibular distraction osteogenesis: a case report. Rapid Prototyp. J. (2017);23(3): 602–610.

P. McAllister, M.Watson, E. Burke, A cost-effective, in-house, positioning and cutting guide system for orthognathic surgery,.J. Maxillofac. Oral. Surg. (2018);17(1): 112–114.

M. Fantini, F.D. Crescenzio, L. Ciocca, F. Persiani, Additive manufacturing to assist prosthetically guided bone regeneration of atrophic maxillary arches. Rapid Prototyp. J. (2015); 21 (6): 705–715.

G.W. Melenka, J.S. Schofield, M.R. Dawson, J.P. Carey, Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer. Rapid Prototyp. J. (2015); 21 (5): 618–627.

M. Shahrain, A.J. Q, G.K. Lim, T. Didier, Tensile strength of partially filled FFF printed parts: meta modelling. Rapid Prototyp. J.(2017); 23 (3): 524–533.

N.G. Tanikella, B. Wittbrodt, J.M. Pearce, Tensile strength of commercial polymer materials for fused filament fabrication 3D printing. Addit. Manuf. (2017);15:40–47.

R. Sharma, R. Singh, R. Penna, F. Fraternali, Investigations for mechanical properties of Hap, PVC and PP based 3D porous structures obtained through biocompatible FDM filaments. Compos. Part B.(2018);132: 237–243.

C.M. Al, U. Yaman, Improving the strength of additively manufactured objects via modified interior structure. AIP Conf. Proc.(2017); 1896 (1): 040003.




DOI: https://doi.org/10.37628/ijbme.v8i1.878

Refbacks

  • There are currently no refbacks.