Open Access Open Access  Restricted Access Subscription or Fee Access

Photon activated tunneling in ABO3 type Multiferroic domain wall

Gizachew Diga Milki

Abstract


We present photon assisted tunneling in multiferroics of type ABO3. It is seen that the interactions of photons with this analytic molecule accelerate the electron transmissions. It is clarified that the existence of ferromagnetic, ferroelectric, and piezoelectric in multiferroic materials are consequence of magnetic anisotropy, dipole segregation and strain. The effect of photon is therefore, to disassemble existing electronic states or assemblesto form new electronic states by enhancing its transmission rates. On the other hand, photons with definite frequency are expected to overcome, the Vander Waals interactions. It is expected that photon assisted tunneling/hopping will cause an electric dipole separation. Hence photon assisted tunneling in multferroic domain walls will be dealt.


Keywords


Dipole segregation, domain walls, ferroelectricity, ferromagnetic, magnetic anisotropy, multiferroic, photons, strain, tunneling, Vander Waals interaction

Full Text:

PDF

References


Alaska Subedi, Multiferroics, 2008, 13, pp. 1-18

Armin Kargol, Leszek Malkinski and Gabriel Caruntu, Biomedical Applications of Multiferroic Nanoparticles, 2012, 65. PP. 90 -113.

R.S. Dahiya, M. Valle, Robotic Tactile Sensing, 2013, 978-94-007-0579-1

Muhammad Amin, Exploring the Multifunctional Properties of BiFeO3 -Based Multiferroics 2018, Lahore, 54590

Gradauskaite, Elzbieta, Meisenheimer, Peter, Muller, Marvin, Heron, John and Trassin, Morgan, multiferroic heterostructures for spintronics, physical science Review, 2021, 2, PP 2019 - 0072

M. A. Jalaja, Soma Dutta, Ferroelectrics and multiferroics for next generation photovoltaic, Adv. Mater. Lett. 2015, 6(7), 568-584

Camille Blouzon, photoelectric and magnetic properties of multiferroic domain walls in BiFeO3, Physics, University Pierre et Marie Curie - Paris VI, 2016, PA066006ff

J Peng et al, New iron-based multiferroics with improper ferroelectricity J. Phys. D: Appl. Phys. 51 (2018) 243002

Shifeng Zhao, Advances in Multiferroic nanomaterials Assembled with Clusters, Volume 2015, Article ID 101528, pp. 1-12

Chengliang Lu, Single-phase multiferroics: new materials, phenomena, and physics, National Science Review 2019, 6: 653- 668

Herrn Akash Bhatnagar, et al. Electronic and Photoelectronic processes in Multiferroic Materials;2014

Prabhasini Gupta, P. K. Mahapatra, and R. N. P. Choudhary

D. Rubi et al. Ferromagnetism and increased ionicity in epitaxially grown TbMnO3 films, physical review B. 79, 014416 (2009)

Shuai Dong et al., multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology, Advances in Physics, (2015) 64:5-6, 519-626

Chengliang Lu and Jun Ming Liu, a model system of type II- Multiferroics, 2016, 2, 213-224.

Jun - Jie Zhang, et al, type - II multiferroic Hf2VC2F2 MXene Monolayer with High Transition Temperature, J. Am. Chem. Soc. 2018, 140, 30, 9768–9773

S. Toyoda, N. Abe, T. Arima, and S. Kimura, Physical Review B 91, 054417 (2015)

Andrea Urru et al, A three-order-parameter bistable magnetoelectric multiferroic metal 2020

Cheong, S. W & Mostovoy M. (2007), Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 6(1), 13-20.

A.K. Kundu, P. Nordblad and C. N. R. Rao, J. Phys. Condens. Matter, 18, 4809 (2006)

B.J. Kirby, D. Kan, A. Luykx, et al. Anomalous ferromagnetism in thin films, J. Appl. Phys. 2009, V. 105, 07D917

B. Mettout & P. Gisse, Theory of the photovoltaic and photo-magneto-electric effects in multiferroic materials, 2017, V 506, 1 pp. 93 -110

Y. H. Kim, A. Bhatnagar, E. Pippel, M. Alexe, and D. Hesse, Microstructure of highly strained BiFeO3 thin films: Transmission electron microscopy and electron energy loss spectroscopy studies," Journal of Applied Physics, vol. 115, p. 043526, 2014.

Reda Moubah et al, Photoluminescence Investigation of Defects and Optical Band Gap in Multiferroic BiFeO3 Single Crystals, Applied Physics Express 5 (2012) 035802

Marin Alexe1 & Dietrich Hesse et al, 2010, 2:256

N. Balke et al. Deterministic control of ferroelastic switching in multiferroic materials, nature nanotechnology, 2009, V. 4

Jia et al. Zhenxiang Cheng, Hong yang Zhao, et al. Domain switching in single phase multiferroics Appl. Phys. Rev. 5, 021102 (2018)

Thomas Lottermoser and Dennis Meier, 2020-0032

Pavan Kumar Naini et al, Thermomagnetic Properties of Dy0.9Ho0.1MnO3 Multiferroics 2020 V. 217, issue 17

S. Miyahara and N. Furukawa, Theory of magneto-optical effects in helical multiferroic materials via toroidal Magnon excitation, Phys. Rev. B 89, 195145 (2014).

Wang et al, science, 299, 1719, 2003

Kimura, Nature Physics, 2003, 426, 55

Van Aken et al, Nature Materials, 2004, 3, 164.

Etermov et al. Nature Materials, 2004, 3, 857

Van der Vegte, M. A. competing interactions in multiferroics and low dimensional systems, 2010, PP. 9-20

N. Ortega, Ashok Kumar, P. Bhattacharya, S. B. Maunder, and R. S. Katiyar. Impedance spectroscopy of multiferroic PbZrxTi1−xO3 /CoFe2O4 layered thin films. Phys. Rev. B 77, 014111 (2008).

Kenta Shimamoto et al. Tuning the multiferroic mechanism of TbMnO3 by epitaxial strain, 2017. 7. 44753

U Satya Sainadh, R T Sang, and I V Litvinyuk, Attoclock and the quest for tunneling time in strong- field physics; J. Phys. Photonics (2020), V. 2. 042002

M. A. Jalaja, & Soma Dutta, Adv. Mater. Lett. 2015, 6(7), 568-584

Avneesh Anshul, Ashok Kumar, Bipin K. Gupta, et al. Photoluminescence and time-resolved spectroscopy in multiferroic BiFeO3, Appl. Phys. Lett. 102, 222901 (2013)


Refbacks

  • There are currently no refbacks.