Open Access Open Access  Restricted Access Subscription or Fee Access

Thermal and structural properties of surface treated ragweed fiber reinforced biodegradable polylactic acid biocomposites

Jitendra S. Tate, Subash Panta, Musa I Mannan, Saif AA Taqy, Jennifer Irvin, Ken Mix

Abstract


Natural fiber-reinforced composites (NFRC) are becoming more popular as technological advance recognizes the need for eco-friendly materials. This work presents Giant ragweed (Ambrosia trifida) as a new composite reinforcement material into polylactic acid (PLA) matrix to form novel natural fiber-reinforced composites. Different types of retting techniques are utilized, and hydrogen peroxide retting is proven to provide the most optimized properties. The fibers are taken through subsequent extraction and grinding processes. Surface treatment of the ragweed fiber is conducted using maleic anhydride (MA), GLYMO, and AMEO silanes to decrease the fiber’s hydrophilic properties to have a better fiber/matrix interfacial adhesion. The bio-composite filaments are manufactured using single-screw and twin-screw extruders at 10wt.% fiber loading. The extrusion parameters like temperature and extruder speed were adjusted accordingly to obtain a fiber diameter of 1.65 mm. The test samples were 3D printed to ASTM standards D638 for tensile testing and D790 for flexural testing to study and compare mechanical characteristics using the Fused Deposition Modelling (FDM) technique. Morphological and thermal properties were characterized using scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDAX), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA). The results demonstrate promising mechanical and thermal properties. Ultimately, this research provides the foundation for ragweed as a suitable reinforcement material by establishing an optimal processing framework for ragweed-PLA biocomposites.

Keywords


natural fiber, biocomposite, surface treatment, ragweed, PLA, retting

Full Text:

PDF

References


Alvizo, E. N., Tate, J. S., Holthaus, S. E., & Irvin, J. A. Characterization and Sustainable Retting of ragweed Fibers.

Archana, M. D., Abdul, A. A., & Manash, P. H. (2014). Synthesis and characterization of cellulose acetate from rice husk: Eco-friendly condition. Carbohydrate Polymers 112, 342-349.

Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. https://doi.org/10.1016/j.biortech.2007.09.043

Berglund, L., Rakar, J., Junker, J. P., Forsberg, F., & Oksman, K. (2020). Utilizing the Natural Composition of Brown Seaweed for the Preparation of Hybrid Ink for 3D Printing of Hydrogels. ACS Applied Bio Materials, 3(9), 6510-6520.

Cai, M., Takagi, H., Nakagaito, A. N., Katoh, M., Ueki, T., Waterhouse, G. I., & Li, Y. (2015). Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products, 65, 27-35.

Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 90, 589-597.

Chinga-Carrasco, G. (2018). Potential and limitations of nanocelluloses as components in biocomposite inks for three-dimensional bioprinting and for biomedical devices. Biomacromolecules, 19(3), 701-711.

Cisneros-López, E. O., Anzaldo, J., Fuentes-Talavera, F. J., González-Núñez, R., Robledo-Ortíz, J. R., & Rodrigue, D. (2017). Effect of agave fiber surface treatment on the properties of polyethylene composites produced by dry-blending and compression molding. Polymer Composites, 38(1), 96-104. https://doi.org/https://doi.org/10.1002/pc.23564

Cisneros-López, E. O., González-López, M. E., Pérez-Fonseca, A. A., González-Núñez, R., Rodrigue, D., & Robledo-Ortíz, J. R. (2017). Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Composite Interfaces, 24(1), 35-53. https://doi.org/10.1080/09276440.2016.1184556

Depuydt, D., Balthazar, M., Hendrickx, K., Six, W., Ferraris, E., Desplentere, F., Ivens, J., & Van Vuure, A. W. (2019). Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polymer Composites, 40(5), 1951-1963.

Detyothin, S., Selke, S. E., Narayan, R., Rubino, M., & Auras, R. (2013). Reactive functionalization of poly (lactic acid), PLA: Effects of the reactive modifier, initiator and processing conditions on the final grafted maleic anhydride content and molecular weight of PLA. Polymer degradation and stability, 98(12), 2697-2708.

Di Candilo, M., Bonatti, P., Guidetti, C., Focher, B., Grippo, C., Tamburini, E., & Mastromei, G. (2010). Effects of selected pectinolytic bacterial strains on water‐retting of hemp and fibre properties. Journal of applied microbiology, 108(1), 194-203.

Dong, Y., Milentis, J., & Pramanik, A. (2018). Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid)(PLA) and PLA/wood fibre composites. Advances in Manufacturing, 6(1), 71-82.

Fact Sheet, Hydrogen Peroxide Transportation. (n.d). https://www.americanchemistry.com/ProductsTechnology/Hydrogen-Peroxide/Hydrogen-Peroxide-Transportation.pdf

Girones, J., Vo, L. T. T., Haudin, J.-M., Freire, L., & Navard, P. (2017). Crystallization of polypropylene in the presence of biomass-based fillers of different compositions. Polymer, 127, 220-231. https://doi.org/https://doi.org/10.1016/j.polymer.2017.09.006

Hazardous, restricted, or regulated materials. (n.d). eBay. https://pages.ebay.com/help/policies/hazardous-materials.html

Herrera-Franco, P. J., & Drzal, L. T. (1992). Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites, 23(1), 2-27. https://doi.org/10.1016/0010-4361(92)90282-Y

Hong, C., Kim, N., Kang, S., Nah, C., Lee, Y.-S., Cho, B.-H., & Ahn, J.-H. (2008). Mechanical properties of maleic anhydride treated jute fibre/polypropylene composites. Plastics, Rubber and Composites, 37(7), 325-330.

Hossain, M. K., Karim, M. R., Chowdhury, M. R., Imam, M. A., Hosur, M., Jeelani, S., & Farag, R. (2014). Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Industrial Crops and Products, 58, 78-90.

Hydrogen Peroxide Shipment of Hydrogen Peroxide Samples. (n.d). https://www.solvay.us/en/binaries/ShipH2O2-237202.pdf

Kabir, M., Wang, H., Lau, K., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892.

Khan, Z., Yousif, B. F., & Islam, M. (2017). Fracture behaviour of bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 116, 186-199. https://doi.org/https://doi.org/10.1016/j.compositesb.2017.02.015

Konczewicz, W., Zimniewska, M., & Valera, M. A. (2018). The selection of a retting method for the extraction of bast fibers as response to challenges in composite reinforcement. Textile Research Journal, 88(18), 2104-2119.

Konwarh, R., Karak, N., & Misra, M. (2013). Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnology advances, 31(4), 421-437.

Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120-127.

Mahjoub, R., Yatim, J. M., Sam, A. R. M., & Hashemi, S. H. (2014). Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials, 55, 103-113.

Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hägg, D., & Gatenholm, P. (2015). 3D Bioprinting Human Chondrocytes with Nanocellulose–Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules, 16(5), 1489-1496. https://doi.org/10.1021/acs.biomac.5b00188

Mazzanti, V., Malagutti, L., & Mollica, F. (2019). FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers, 11(7), 1094. https://doi.org/10.3390/polym11071094

Meng, C., Cao, G.-P., Yan, Y.-Z., Zhao, E.-Y., Hou, L.-Y., & Shi, H.-Y. (2017). Synthesis of cellulose acetate propionate with controllable contents and distributions of acetyl and propionyl in the C2, C3 and C6 positions. Reaction Kinetics, Mechanisms and Catalysis, 122(2), 1031-1047.

Mishra, J. K., Hwang, K.-J., & Ha, C.-S. (2005). Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer, 46(6), 1995-2002.

Natural Fiber Composites Market Size | NFC Industry Report, 2018-2024.

Panthapulakkal, S., Law, S., & Sain, M. (2005). Enhancement of Processability of Rice Husk Filled High-density Polyethylene Composite Profiles. Journal of Thermoplastic Composite Materials, 18(5), 445-458. https://doi.org/10.1177/0892705705054398

Patra, A. K. (2016). Linen and Its Wet Processing. In Fiber Plants (pp. 65-84).

Pérez-Fonseca, A. A., Robledo-Ortíz, J. R., Moscoso-Sánchez, F. J., Fuentes-Talavera, F. J., Rodrigue, D., & González-Núñez, R. (2015). Self-hybridization and Coupling Agent Effect on the Properties of Natural Fiber/HDPE Composites. Journal of Polymers and the Environment, 23(1), 126-136. https://doi.org/10.1007/s10924-014-0706-3

Pérez-Fonseca, A. A., Robledo-Ortíz, J. R., Ramirez-Arreola, D. E., Ortega-Gudiño, P., Rodrigue, D., & González-Núñez, R. (2014). Effect of hybridization on the physical and mechanical properties of high density polyethylene–(pine/agave) composites. Materials & Design, 64, 35-43. https://doi.org/https://doi.org/10.1016/j.matdes.2014.07.025

Qin, C., Soykeabkaew, N., Xiuyuan, N., & Peijs, T. (2008). The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydrate polymers, 71, 458-467. https://doi.org/10.1016/j.carbpol.2007.06.019

Ray, D., Sarkar, B. K., Rana, A., & Bose, N. R. (2001). Effect of alkali treated jute fibres on composite properties. Bulletin of materials science, 24(2), 129-135.

Rosenthal, A. (1967). The role of acid catalysts in the manufacture of cellulose acetate. Pure and Applied Chemistry, 14(3-4), 535-546.

Sanjay, M., Arpitha, G., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites: An overview. Natural Resources, 7(3), 108-114.

Shoba, B., Jeyanthi, J., & Vairam, S. (2018). Synthesis, characterization of cellulose acetate membrane and application for the treatment of oily wastewater. Environmental technology.

Singha, A., & Rana, A. K. (2013). Effect of Aminopropyltriethoxysilane (APS) treatment on properties of mercerized lignocellulosic grewia optiva fiber. Journal of Polymers and the Environment, 21(1), 141-150.

Sisti, L., Totaro, G., Vannini, M., & Celli, A. (2018). Retting process as a pretreatment of natural fibers for the development of polymer composites. In Lignocellulosic composite materials (pp. 97-135). Springer.

Stoof, D., Pickering, K., & Zhang, Y. (2017). Fused deposition modelling of natural fibre/polylactic acid composites. Journal of Composites Science, 1(1), 8.

Sullins, T., Pillay, S., Komus, A., & Ning, H. (2017). Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering, 114, 15-22. https://doi.org/https://doi.org/10.1016/j.compositesb.2017.02.001

Tran, L., Yuan, X., Bhattacharyya, D., Fuentes, C., Van Vuure, A. W., & Verpoest, I. (2015). Fiber-matrix interfacial adhesion in natural fiber composites. International Journal of Modern Physics B, 29(10n11), 1540018.

USPS Content Restrictions. (n.d). Stamps.com. https://stamps.custhelp.com/app/answers/detail/a_id/179/~/usps-content-restrictions

Xie, Y., Hill, C. A., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819.




DOI: https://doi.org/10.37628/ijccm.v8i2.920

Refbacks

  • There are currently no refbacks.