Open Access Open Access  Restricted Access Subscription or Fee Access

Thermogravimetic Study Of Chrysodine Dye Type Bridge Containing Bis (8-quinolinol)s Ligands and Their Coordination Polymers

Gaurang Chudasama, Nisha Prajapati

Abstract


Our thermogravimetric analysis state that the degradation in chrysodine dye type bridge containing bis (8-quinolinol)s metal coordination polymers was initiated at almost the same temperature near about 25-500 C(T0). The remarkable difference is observed in the mode of thermal degradation of the parent ligand and its coordination polymer. The unchelated bis(8-quinolinol) ligand and coordination polymers begin to decompose almost at the same temperature but in the polymer chelates this decomposition propagated very fast compared to that in its parent ligand. The mode of thermal degradation in all of the coordination polymers is found to be similar. However, the rate of thermal decomposition in each of the samples is remarkably different indicating that the thermal degradation is dependent on the efficiency of a central metal atom to act as a catalyst in the thermal decomposition. Comparison of TG data of coordination polymers has shown that a series of coordination polymers of bis(8-quinolinol)s ligand CP-1 are thermally most stable. The coordination polymers of six bis(8-quinolinol)s ligands have indicated that the Cu-coordinated polymers of these bis(8-quinolinol)s ligands have the least thermal stability. However, the order of thermal stability among the coordination polymers in each series of bis(8-quinolinol)s ligands is different indicating the structure of the aliphatic bridge.


Full Text:

PDF

References


Bernhard. Wunderlich. (2005). Thermal Analysis of Polymeric Materials, Vol.1,Springer Berlin, Heidelberg, 978-3-540-26360-9

Liang, C. Y. (1964). Newer Methods of Polymer Characterization, Interscience. New York, 47.

Harikumaran nair, M. L., Pramila gladis, M.S., & Sheela, A.(2007). synthesis, spectral and thermal studies of dioxouranium (VI) complexes of schiff bases derived from 2,3-dimethyl-1-phenyl-4-amino pyrazol-5-one. Asian Journal of Chemistry, 20, 2504-2514.

Crompton, T. R. (2010). Chromatography Mass Spectroscopy in Polymer Analysis. Smithers Rapra.

Perkins, R. M., Drake Jr, G. L., & Reeves, W. A. (1966). DTA and TGA studies of flame‐resistant fabrics. Journal of Applied Polymer Science, 10(7), 1041-1066.

Still, R. H., & Keattch, C. J. (1966). Thermal degradation of polymers. Part I. Thermogravimetric and differential thermal analysis studies of atactic poly‐m‐aminostyrene and related polymers. Journal of Applied Polymer Science, 10(2), 193-200.

Morgan, D. J. (1989). ME Brown. Introduction to Thermal Analysis: Techniques and Applications. Mineralogical Magazine, 53(373), 662-662.

Reich, L., Lee, H. T., & Levi, D. W. (1965). Kinetic parameters in polymer degradation by dynamic thermogravimetric analysis. Journal of Applied Polymer Science, 9(1), 351-358.

Reich, Leo., Stivala, S.S. (1986). Computer-determined kinetic parameters from TG curves. Part XV. Thermochimica Acta, 98, 359-361.

Redfern, J. P. (1986). Thermal characterisation of polymeric materials. Edited by Edith A. Turi, UK edition published by Academic Press Inc.(London) Ltd, 1981. pp. ix+ 972, $98.00. ISBN 0‐12‐703780‐2.

Acitelli, M. A., Prime, R. B., & Sacher, E. (1971). Kinetics of epoxy cure:(1) The system bisphenol-A diglycidyl ether/m-phenylene diamine. Polymer, 12(5), 335-343.

Schneider, N. S., Sprouse, J. F., Hagnauer, G. L., & Gillham, J. K. (1979). DSC and TBA studies of the curing behavior of two dicy‐containing epoxy resins. Polymer Engineering & Science, 19(4), 304-312.

Katović, Z. (1967). Curing of resole‐type phenol–formaldehyde resin. Journal of Applied Polymer Science, 11(1), 85-93.

King, P. W., Mitchell, R. H., & Westwood, A. R. (1974). Structural analysis of phenolic resole resins. Journal of Applied Polymer Science, 18(4), 1117-1130.

Westwood, A. R. (1972). Analysis of the Curing Reactions of Thermosetting Polymers by DSC. In Thermal Analysis: Volume 3: Organic and Macromolecular Chemistry, Ceramics, Earth Science (pp. 169-177). Basel: Birkhäuser Basel.

Murphy, C. B. (1958). Differential thermal analysis. Analytical chemistry, 30(4), 867-872.

Hatakeyama, T., & Quinn, F. X. (1999). Thermal analysis: fundamentals and applications to polymer science. [sl].

Hosier, Ian. L., & Vaughan, Alun. S. (2020). Polymer Characterization.Polymer Chemistry: A Practical Approach.

Godovsky, Yuli. K. (1992). Thermophysical Properties of Polymers. Springer-Verlag.

Teetsel, D. A., Levi, D. W., & PLASTICS TECHNICAL EVALUATION CENTER PICATINNY ARSENAL NJ. (1966). Literature Survey on Thermal Degradation, Thermal Oxidation, and Thermal Analysis of High Polymers: II (p. 0156). Plastics Technical Evaluation Center, Picatinny Arsenal.

Knop, Andre., & Pilato. Louis. A. (1985). Degradation of Phrnolic Resins by Heat, Oxygen and High-energy Radiation.

Abdelbar. Ahmed. (2015). Wear of Polymers and Composites.

Conley. R.T., Bieron. I.F., and Perch. (1960). Div.Org.Contigs and Plastics-Prepri P.American Chemical Society, 20(2), 244-54

Conley, R. T., & Bieron, J. F. (1963). A study of the oxidative degradation of phenol‐formaldehyde polycondensates using infrared spectroscopy. Journal of Applied Polymer Science, 7(1), 103-117.

Tomic, E. A. (1965). Thermal stability of coordination polymers. Journal of Applied Polymer Science, 9(11), 3745-3752.

Winslow, E. C., & Manning, A. A. (1964). Salicylaldehyde–formaldehyde polymers and their metallic chelates. Journal of Polymer Science Part A: General Papers, 2(11), 4903-4909.

Klimanova, N. V., Lubrovina, L. V., Pavlova, S. S., Babchinister, T. M., Genin, Y. V., & Korshak, V. V. (1977). Investigation of the crystallization from dioxan of a polyarylate based on phenolanthrone and terephthalic acid. Polymer Science USSR, 19(10), 2649-2657.

Berg, E. W., & Alam, A. (1962). Studies on coordination polymers: Part I. Coordination polymers of 8, 8'-dihydroxy-5, 5'-biquinolyl. Analytica Chimica Acta, 27, 454-459.

Brown, J. E., Tryon, M., & Horowitz, E. (1969). Thermal decomposition of Cu (II)‐bis (8‐hydroxy‐5‐quinolyl) methane coordination polymer. Journal of Applied Polymer Science, 13(9), 1937-1947.

Horowitz, E., & Perros, T. P. (1964). Thermal stability of bis (8-hydroxy-5-quinolyl)-methane co-ordination polymers. Journal of Inorganic and Nuclear Chemistry, 26(1), 139-159.

V.V.Korshak, A.A.Slinkin, S.V.Vinogradova and T. M. Babchinister (1961). Polymer Science, USSR, 3, 1824-32.

Patel, R. D., Patel, H. S., & Patel, S. R. (1987). Co-ordination polymers of bis (8-hydroxy-5-quinolylmethylene) sulphide (BHQS). European polymer journal, 23(3), 229-232.

Shah, T. B., Patel, H. S., Dixit, R. B., & Dixit, B. C. (2003). Coordination polymers of 1, 8-bis (8-hydroxyquinolin-5-yl)-2, 7-dioxaoctane. International Journal of Polymer Analysis and Characterization, 8(6), 369-381.

Raj, M. M., Raj, L. M., Patel, H. S., & Shah, T. B. (1999). Co-ordination polymers of 7, 7′-[1, 4-N, N′-dimethylene piperazinylene]-8-quinolinol (DMPQ). European polymer journal, 35(8), 1537-1541.

Patel, K. D., & Panchani, S. C. (2003). Co-ordination Polymers of 1, 3-Bis (8-hydroxy-5-quinolinylmethyleneoxy) phenylene (BHQP). Ultra Scientist of Physical Sciences, 15(2), 195-200.

Degeiso, R. C. (1962). LG Donaruma nd EA Tomic. J. Org. Chem, 27, 1424.

Horrocks, R. H., & Winslow, E. C. (1963). Oxine–formaldehyde polymers and their metallic chelates. Journal of Polymer Science Part A: General Papers, 1(12), 3655-3664.




DOI: https://doi.org/10.37628/jcmm.v9i2.1042

Refbacks

  • There are currently no refbacks.