Open Access Open Access  Restricted Access Subscription or Fee Access

Emerging Smart Materials: Recent Development in Self-healing Elastomers

Shreyashi Mukhopadhay, Hiren Bhajiwala, Anil K Bhowmick, Virendrakumar Gupta

Abstract


Smart materials based on olefins, diolefins, renewable materials and others reactive monomers  are witnessing a rapid growth across different applications sectors such as  electronics, health care, automotive, textile, building, construction, agriculture & Energy. Materials development is currently moving at high pace both in academia and in industry due to their diverse commercial potential and beneficial merit for the society. Self – healing elastomers have emerged as high potential materials among different class of smart materials capable of healing damage by itself fully or partially leading to prevention of failure. The cause of material damage can be thermal, mechanical, chemical and /or combination of these factors leading to catastrophic failure of the product.  The self - healing characteristic enhances the safety of the products and extend their lifetime.

 

Key words: Damage repair, Elastomer, Microcapsule, Self-Healing, Smart Material


Full Text:

PDF

References


Osswald, Tim A. and Menges, Georg, Material Science of Polymers for Engineers; Hanser Publishers, 2003; 447.

J. Blaiszik, S. L. B. Kramer, S.C. Olugebefola, J.S. Moore, N.R. Sottos, S.R. White, Self-Healing Polymers and Composites, Annu. Rev. Mater. Res. 2010; 40: 179.

M.W. Urban, Stratification, stimuli-responsiveness, self-healing, and signalling in polymer networks, Prog. Polym. Sci. 2009; 34: 679.

Jud, H. H. Kausch, J. G. Williams, Fracture mechanics studies of crack healing and welding of polymers, J. Mater Sci., 1981; 16 : 204.

H. C. Carlson, K. C. Goretta, Basic materials research programs at the U.S. Air Force Office of Scientific Research, Mater Sci Eng Part B—Solid State Mater Adv Tec, 2006;132: 2.

S. Meure and D. Y. Wu, The biomimetic approach to self-healing polymer composite development in the aerospace industry, Proceedings of the First International Conference on Self-Healing Materials, Noordwijk, Netherlands, Springer, 18 – 20th April, 2007.

S. R. White, N. R. Sottos, P. H. Geubelle, J.S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan, Autonomic healing of polymer composites, Nature, 2001; 409: 794.

C. Passive tunable fibers and matrices. International Journal of Modern Physics – B, 1992; 6: 2763.

Dry C, Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibres into cement matrices, Smart Materials and Structures, 1994; 3: 118.

M. Motuku, U. K. Vaidya, C. M. Janowski, Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact, Smart Materials and Structures, 1999; 8 : 623.

X. P. Zhao, B. L. Zhou, C. R. Luo, J. H. Wang, J. W. Liu, A model of intelligent material with self-repair function, Chinese Journal of Materials Research, 1996; 10: 101.

S. M. Bleay, C. B. Loader, V. J. Hawyes, L. Humberstone, P. T. Curtis, A smart repair system for polymer matrix composites, Composites, Part A: Applied Science and Manufacturing, 2001; 32: 1767.

R. S. Trask, I. P. Bond, Biomimetic self-healing of advanced composite structures using hollow glass fibres, Smart Materials and Structures 2006; 15: 704.

R. S. Trask, G. J. Williams, I. P. Bond, Bioinspired self-healing of advanced composite structures using hollow glass fibres, Journal of the Royal Society: Interface, 2007; 4 : 363.

J. W. C. Pang, I. P. Bond, A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility, Composites Science and Technology, 2005; 65 : 1791.

S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown and S. Viswanathan,Autonomic healing of polymer composites;Nature, 2001; 409: 6822 794–797.

E. N. Brown, S. R. White, N. R.Sottos,Microcapsule induced toughening in a self-healing polymer composite; Journal of Materials Science, 2004; 39 : 1703.

K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, S. R. White, Self-healing materials with microvascular networks, Nature Materials, 2007; 6 : 581.

R. P. Wool, K. M. O’Connor, A theory crack healing in polymers, Journal of Applied Physics, 1981; 52 :5953.

K. D. Kumar, G. C. Basak, AK Bhowmick, Adhesion between Unvulcanised Elastomers: A Critical Review, Progress in Adhesion and Adhesives, 2018, 3, 185.

KD Kumar, MS Satyanarayana, GC Basak, AK Bhowmick, Adhesion between Compounded Elastomers: A Critical Review, Reviews of Adhesion and Adhesives, 2018, 6 (2), 105.

W. K. Micheal, R. W. Scott, R. S. Nancy, A Self-Healing Poly(Dimethyl Siloxane) Elastomer, Adv.Funct.Mater., 2007; 17 : 2399.

S. J Kalista, T. C. Ward, Z. Oyetunji, Self-Healing of Poly (Ethylene-co-Methacrylic Acid) Copolymers Following Projectile Puncture, Mech. Adv. Mater. Struct. 2007; 14: 391.

K. Nagaya, S. Ikai, M. Chiba, X. Chao, Tire with Self-Repairing Mechanism; JMSE Int. J. 2006; 49 : 379

B. A. Beiermann, M. W. Keller, and N. R. Sottos, Self-healing flexible laminates for resealing of puncture damage;Smart Mater. Struct., 2009; 18 : 1.

W. K. Michael, A. B. Brett, R. W. Scott and R. S. Nancy,Biomimetic self-healing metals, Proceedings of the First International Conference on Self-Healing Materials, Noordwijk aan Zee, The Netherlands, Berlin, Dordrecht,Springer,18 – 20th April, 2007.

S. Burattini, H. M. Colquhoun, B. W. Greenland, W. Hayes, A novel self-healing supramolecular polymer system, Faraday Discuss, 2009: 143 : 251.

T. M. Squires, S. R. Quake, and Microfluidics: Fluid physics at the nanoliter scale, Rev. Mod. Phys. 2005; 77: 977.

G. M. Whitesides, A. D. Stroock, Flexible methods for microfluidics, Phys. Today, 2001; 54: 42.

G. M. Whitesides, The origins and the future of microfluidics, Nature, 2006; 442: 368.

A. J. deMello,Control and detection of chemical reactions in microfluidic systems,Nature, 2006; 442: 394.

S. T. Chang, E. Beaumont, D. N. Petsev, O. D. Velev, Remotely powered distributed microfluidic pumps and mixers based on miniature diodes, Lab Chip, 2008; 8 : 117.

S. T. Chang, A. B. Uçar, G. R. Swindlehurst, R.O. Bradley IV, F. J. Renk, Orlin D. Velev,Materials of Controlled Shape and Stiffness with Photocurable Microfluidic Endoskeleton Adv. Mater., 2009; 21 : 2803.

C.L. Mangun, A.C. Mader, N.R. Sottos, S.R. White, Self-healing of a high temperature cured epoxy using poly (dimethylsiloxane) chemistry, Polymer, 2010; 51: 4063.

C. W. Park, A. B. South, X. Hu, C. Verdes, J. D. Kim, L. A. Lyon; Gold nanoparticles reinforce self-healing microgel multilayers Colloid and Polym Sci, 2011; 289 : 583.

S. Bokern, Z. Fan, C. Mattheis, A. Greiner, S. Agarwal, Synthesis of New Thermoplastic Elastomers by Silver Nanoparticles as Cross-Linker Macromolecules, 2011; 44 : 5036.

S. H. Cho, S. R. White, P. V. Braun, Chem.Room-Temperature Polydimethylsiloxane-Based Self-Healing Polymers Mater. 2012; 24: 4209.

C.-H. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F. Lisse, C. Linder, X.-Z. You, Z. Bao, A highly stretchable autonomous self-healing elastomer, 2016; 8: 618–624.

Y.L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y.-C. Chiu, V. Feig, J. Xu, T. Kurosawa, X. Gu, C. Wang, M. He, J. W. Chung, Z. Bao, Stretchable Self-Healing Polymeric Dielectrics Cross-LinkedThrough Metal–Ligand Coordination, Journal of the American Chemical Society, 2016; 138: 6020.

D.D. Zhang, Y.B. Ruan, B.Q. Zhang, X. Qiao, G.Deng, Y. Chen, C.Y. Liu, A self-healing PDMS elastomer based on acylhydrazone groups and the role of hydrogen bonds; Polymer, 2017; 120 : 189.

Y. X. Lu and Z. Guan, Olefin Metathesis for Effective Polymer Healing via Dynamic Exchange of Strong Carbon–Carbon Double Bonds J. Am. Chem. Soc., 2012; 134 :14226.

Ercolani, G.; Mandolini, L.; Mencarelli, P.; Roelens; Macrocyclization under thermodynamic control. A theoretical study and its application to the equilibrium cyclooligomerization of beta propiolactoneS. J. Am. Chem. Soc., 1993; 115: 3901 – 3908.

N. Yamaguchi, H. W. Gibson, Stabilities of cooperatively formed cyclic pseudorotaxane dimers Chem. Commun., 1999: 789.

S. Abed, S. Boileau, and L. Bouteiller, Supramolecular Association of Acid-Terminated Poly (dimethylsiloxane)s. 2. Molecular Weight Distributions L. Macromolecules, 2000; 33: 8479.

T. Cate, A. T.; Kooijman, H.; Spek, A. L.; Sijbesma, R. P.; Meijer, E. W. Conformational Control in the Cyclization of Hydrogen-Bonded Supramolecular Polymers, J. Am. Chem. Soc., 2004; 126 : 3801.

Scherman, O. A.; Ligthart, G. B. W. L.; Sijbesma, R. P.; Meijer, E. W. A Selectivity‐Driven Supramolecular Polymerization of an AB Monomer, Angew. Chem., Int. Ed., 2006; 45: 2072.

H. Ohkawa, A.Takayama, S. Nakajima, H. Nishide, Cyclic Tetramer of a Metalloporphyrin Based on a Quadruple Hydrogen BondOrg. Lett., 2006; 8 : 2225.

A. Miyawaki, Y. Takashima, H. Yamaguchi, A. Harada, Branched supramolecular polymers formed by bifunctional cyclodextrin derivatives, Tetrahedron, 2008; 64 : 8355.

F. Huang, D. S. Nagvekar, C. Slebodnik, H. W. Gibson, A supramolecular triarm star polymer from a homotritopic tris (crown ether) host and a complementary monotopic paraquat-terminated polystyrene guest by a supramolecular coupling method, J. Am. Chem. Soc., 2005; 127 : 484.

E. M. Todd, S. C. Zimmerman, Supramolecular Star Polymers. Increased Molecular Weight with Decreased Polydispersity through Self-Assembly, J. Am. Chem. Soc., 2007; 129: 14534.

J. Bernard, F. Lortie, B. Fenet, Design of Heterocomplementary H‐Bonding RAFT Agents – Towards the Generation of Supramolecular Star Polymers, Macromol. Rapid Commun., 2009; 30 : 83.

R. F. M. Lange, M. van Gurp, E. W. Meijer, Hydrogen‐bonded supramolecular polymer networks,J. Polym. Sci., Part A: Polym. Chem., 1999; 37: 3657.

V. Berl, M. Schmutz, M. J. Krische, R. G. Khoury, J.M. Lehn, Chem. Eur. J. 2002; 8 : 1227

O. Colombani, L. Bouteiller, Selective synthesis of non-symmetrical bis-ureas and their self-assembly, New J. Chem., 2004; 28: 1373.

O. Colombani, C. Barioz, L. Bouteiller, C. Chaneac, C.; L. Fomperie, F. Lortaie, H. Monties, Attempt toward 1D cross-linked thermoplastic elastomers: Structure and mechanical properties of a new system, Macromolecules, 2005; 38 : 1752.

L. Lortie, F. Montes, H. Attempt toward 1D Cross-Linked Thermoplastic Elastomers: Structure and Mechanical Properties of a New System Macromolecules, 2005; 38: 1752.

W. C. Yount, D. M. Loveless, S. L. Craig, Strong means slow dynamic contributions to the bulk mechanical properties of supramolecular networks, Angew. Chem., Int. Ed., 2005; 44: 2746.

S. Pensec, N. Nouvel, A. Guilleman, C. Creton, F. Boue, L. Bouteiller, Self-Assembly in Solution of a Reversible Comb-Shaped Supramolecular Polymer, Macromolecules, 2010; 43 : 2529.

R. Shankar, R. Nachiket R, D. Xu, Self-healing thermal interface materials for semiconductor packages US 20100264536 A1, 2010.

A. A. Kavitha, N. K. Singha, Smart “All Acrylate” ABA Triblock Copolymer Bearing Reactive Functionality via Atom Transfer Radical Polymerization (ATRP): Demonstration of a “Click Reaction” in Thermoreversible Property, Macromolecules, 2010; 43 : 3193.

N. Hohlbein, A. Shaaban, A. R. Bras, W. Pyckhout-Hintzen, A. M. Schmidt, Self-healing dynamic bond-based rubbers: understanding the mechanisms in ionomeric elastomer model systems Phys. Chem. Chem. Phys., 2015; 17: 21005.

Md. A. Rhaman, M. Penco, G. Spagnoli, A. M. Grande, L. Di Landro, Self‐Healing Behavior of Blends Based on Ionomers with Ethylene/Vinyl Alcohol Copolymer or Epoxidized Natural Rubber, Macromol. Mater. Eng., 2011; 296: 1119.

Md. A. Rahman, M. Penco, I. Peroni, G. Ramorino, A. M. Grande, and L. Di Landro, Self-Repairing Systems Based on Ionomers and Epoxidized Natural Rubber Blends ACS Appl. Mater. Interfaces, 2011; 3: 4865.

Md A. Rahman, M. Penco, I. Peroni, G. Ramorino, G. Janszen, L. Di Landro, Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers, Smart Mater. Struct., 2012; 21: 035014.

C. C. Wang, W. M. Huang, Z. Ding, Y. Zhao, H. Purnawali, L. X. Zheng, H. Fan, C. B. He, Rubber-like shape memory polymeric materials with repeatable thermal-assisted healing function Smart Mater. Struct., 2012; 21: 115010.

Md A. Rahman, G. Spagnoli, A. M. Grande, L. Di Landro, Role of Phase Morphology on the Damage Initiated Self‐healing Behavior of Ionomer Blends Macromol. Mater. Eng., 2013; 298: 1350.

X. Kuang, G. Liu, X. Dong, D. Wang, Enhancement of Mechanical and Self-Healing Performance in Multiwall Carbon Nanotube/Rubber Composites via Diels–Alder Bonding, Macromol. Mater. Eng., 2016; 301: 535.

S Mukhopadhyay, P Sahu, H Bhajiwala, S Mohanty, V Gupta, AK Bhowmick, Synthesis, characterization and properties of self-healable ionomeric carboxylated styrene–butadiene polymer, Journal of Materials Science, 2019 54 (24), 14986.

A. C. Schussele, F. Nubling, Y. Thomann, O. Carstensen, G. Bauer, T. Speck, R. Mülhaupt, Self-healing rubber based on NMR blends with hyperbranched polyethyleneamine, Macromol. Mater. Eng., 2012; 297:411

A. Nasresfahania, P. M. Zelisko, Synthesis of a self-healing siloxane-based elastomer cross-linked via a furan-modified polyhedral oligomeric silsesquioxane: investigation of a thermally reversible silicon-based cross-link, Polym. Chem., 2017; 8 : 2942.

H. P. Xiang, M. Z. Rong, M. Q. Zhang, Self-healing, Reshaping, and Recycling of Vulcanized Chloroprene Rubber: A Case Study of Multitask Cyclic Utilization of Cross-linked Polymer, ACS Sustainable Chemistry & Engineering, 2016; 4 : 2715.

E. D. Rodriguez, X. Luo, P. T. Mather, Linear/Network Poly(ε-caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (SMASH) ACS Appl. Mater. Interfaces, 2011; 3: 152.

Y. Chen, A. M. Kushner, G. A. Williams, Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers Nature Chemistry, 2012; 4 : 467.

N. Hohlbein, A. Shaaban, A.M. Schmidt, Remote-controlled activation of self-healing behavior in magneto-responsive ionomeric composites. Polymer, 2015; 69 : 301.

P. Beyer, L. Braun, R. Zentel, (Photo) crosslinkable Smectic LC Main‐Chain Polymers Macromol. Chem. Phys., 2007; 208: 2439.

P. Beyer, E. M. Terentjev, R. Zentel, Monodomain Liquid Crystal Main Chain Elastomers by Photocrosslinking Macromol. Rapid Commun., 2007; 28 : 1485.

C. J. Camargo, H. Campanella, J. E. Marshall, N. Torras, K. Zinoviev, E. M. Terentjev, J. Esteve, Localised actuation in composites containing carbon nanotubes and liquid crystalline elastomers. Macromol. Rapid Commun. 2011; 32:1953.

C. Wang, N. Liu, R. Allen, J. B. H. Tok, Y. Wu, Fan Zhang, Y. Chen, and Z. Bao, A Rapid and Efficient Self Healing ThermoReversible Elastomer Crosslinked with Graphene Oxide Adv. Mater., 2013; 25 : 5785.

Md. Kashif, Y.-W. Chang, Preparation of supramolecular thermally repairable elastomer by crosslinking of maleated polyethylene octene elastomer with 3amino1, 2, 4 triazole. Polym Int, 2014; 63:1936.

P. Sahu, AK Bhowmick, Sustainable self‐healing elastomers with thermoreversible network derived from biomass via emulsion polymerization, J. of Polymer Science Part A: Polymer Chemistry, 2019, 57 (6), 738.




DOI: https://doi.org/10.37628/jcmm.v5i2.621

Refbacks

  • There are currently no refbacks.